IDEAS home Printed from https://ideas.repec.org/a/ris/jtralu/0105.html
   My bibliography  Save this article

Explaining walking distance to public transport: The dominance of public transport supply

Author

Listed:
  • Daniels, Rhonda

    (University of Sydney)

  • Mulley, Corinne

    (University of Sydney)

Abstract

Potential influences on explaining walking distance from home to access public transport are investigated, including trip and demographic characteristics and public transport supply. In Sydney, Australia, people walk farther to the train than to the bus, the distributions of walking distances are different for each mode, and the trip and demographic characteristics of train and bus users are different. Given the decision to walk to public transport, demographic characteristics such as age, gender, income, and labor force status and trip characteristics such as trip purpose, time of day and week, fare and ticket type, and trip duration are not significant in explaining walking distance to each mode of public transport. The mode of the public transport trip is the most important determinant of walking distance, reflecting the different supply and spacing of each mode. For instance, there are many more bus stops than train stations. The differences between train and bus users suggest that accessibility initiatives for public transport might not be the same for each mode.

Suggested Citation

  • Daniels, Rhonda & Mulley, Corinne, 2013. "Explaining walking distance to public transport: The dominance of public transport supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 5-20.
  • Handle: RePEc:ris:jtralu:0105
    as

    Download full text from publisher

    File URL: http://www.jtlu.org/index.php/jtlu/article/view/308/338
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Iacono, Michael & Krizek, Kevin J. & El-Geneidy, Ahmed, 2010. "Measuring non-motorized accessibility: issues, alternatives, and execution," Journal of Transport Geography, Elsevier, vol. 18(1), pages 133-140.
    3. Craig Townsend & John Zacharias, 2010. "Built environment and pedestrian behavior at rail rapid transit stations in Bangkok," Transportation, Springer, vol. 37(2), pages 317-330, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    2. Sun, Guibo & Wallace, Dugald & Webster, Chris, 2020. "Unravelling the impact of street network structure and gated community layout in development-oriented transit design," Land Use Policy, Elsevier, vol. 90(C).
    3. Faghih Imani, Ahmadreza & Miller, Eric J. & Saxe, Shoshanna, 2019. "Cycle accessibility and level of traffic stress: A case study of Toronto," Journal of Transport Geography, Elsevier, vol. 80(C).
    4. Arranz-López, Aldo & Soria-Lara, Julio A & López-Escolano, Carlos & Pueyo Campos, Ángel, 2017. "Retail Mobility Environments: A methodological framework for integrating retail activity and non-motorised accessibility in Zaragoza, Spain," Journal of Transport Geography, Elsevier, vol. 58(C), pages 92-103.
    5. Todor Stojanovski, 2019. "Urban Form and Mobility Choices: Informing about Sustainable Travel Alternatives, Carbon Emissions and Energy Use from Transportation in Swedish Neighbourhoods," Sustainability, MDPI, vol. 11(2), pages 1-28, January.
    6. Wang, Jueyu & Cao, Xinyu, 2017. "Exploring built environment correlates of walking distance of transit egress in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 64(C), pages 132-138.
    7. Ivan Blečić & Tanja Congiu & Giovanna Fancello & Giuseppe Andrea Trunfio, 2020. "Planning and Design Support Tools for Walkability: A Guide for Urban Analysts," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    8. Kevin Fang & Susan Handy, 2019. "Skateboarding for transportation: exploring the factors behind an unconventional mode choice among university skateboard commuters," Transportation, Springer, vol. 46(1), pages 263-283, February.
    9. David S Vale & Mauro Pereira, 2017. "The influence of the impedance function on gravity-based pedestrian accessibility measures: A comparative analysis," Environment and Planning B, , vol. 44(4), pages 740-763, July.
    10. Julia Koschinsky & Emily Talen & Mariela Alfonzo & Sungduck Lee, 2017. "How walkable is Walker’s paradise?," Environment and Planning B, , vol. 44(2), pages 343-363, March.
    11. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    12. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    13. Marie Geraldine Herrmann-Lunecke & Cristhian Figueroa-Martínez & Francisca Parra Huerta & Rodrigo Mora, 2022. "The Disabling City: Older Persons Walking in Central Neighbourhoods of Santiago de Chile," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    14. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    15. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    16. Van Acker, Veronique & Ho, Loan & Stevens, Larissa & Mulley, Corinne, 2020. "Quantifying the effects of childhood and previous residential experiences on the use of public transport," Journal of Transport Geography, Elsevier, vol. 86(C).
    17. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    18. Singleton, Patrick A. & Park, Keunhyun & Lee, Doo Hong, 2021. "Varying influences of the built environment on daily and hourly pedestrian crossing volumes at signalized intersections estimated from traffic signal controller event data," Journal of Transport Geography, Elsevier, vol. 93(C).
    19. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    20. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.

    More about this item

    Keywords

    Accessibility; access to public transport; land use;
    All these keywords.

    JEL classification:

    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:jtralu:0105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Arlene Mathison (email available below). General contact details of provider: https://edirc.repec.org/data/ctumnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.