IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v155y2022icp450-463.html
   My bibliography  Save this article

The dynamic and long-term changes of automated bus service adoption

Author

Listed:
  • Zhao, Xiaoyun
  • Susilo, Yusak O.
  • Pernestål, Anna

Abstract

Integrating automated buses (ABs) into the public transport system may have potentials of providing more environment-friendly and cost-efficient mobility solutions by improving travel safety, reducing cost and decreasing congestion. However, the realization of the potentials depends not only on innovative technologies but also on users’ acceptance of the ABs service. Whilst there has been a number of studies exploring the acceptance and adoption of ABs services, hardly any longitudinal studies have analyzed the long-term changes of individuals’ behavior in adopting AB services. This paper aims to add knowledge on user acceptance of ABs in public transport based on empirical evidence in a real-life deployment context. Three waves of surveys that investigated users’ travel attitudes and behaviors towards the automated bus were conducted at three different time points (six months, 11 months, and 14 months after the launch). The relationship between socio-demographic variables, travel experience variables, and attitude variables is modeled using structural equation modelling (SEM). Factors that influence experienced users to continue using the service were found to dynamically change over time. Initially, people were attracted to use the service if they perceived the information of the service to be sufficient, but they were demotivated to continue using the service if the comfort was worse, frequency was lower, or travel time was longer than expected. The results show that previous experience of adopting the ABs has impacts on different attitude variables. In order to promote individuals’ continued use of ABs, the public transport authorities and operators should work closely to increase the frequency of the services. It is also necessary to enhance the comfort of the ABs.

Suggested Citation

  • Zhao, Xiaoyun & Susilo, Yusak O. & Pernestål, Anna, 2022. "The dynamic and long-term changes of automated bus service adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 450-463.
  • Handle: RePEc:eee:transa:v:155:y:2022:i:c:p:450-463
    DOI: 10.1016/j.tra.2021.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421002767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    2. Golob, Thomas F., 2003. "Structural equation modeling for travel behavior research," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 1-25, January.
    3. Jan C Zoellick & Adelheid Kuhlmey & Liane Schenk & Daniel Schindel & Stefan Blüher, 2019. "Assessing acceptance of electric automated vehicles after exposure in a realistic traffic environment," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-23, May.
    4. K. W. Axhausen & M. Löchl & R. Schlich & T. Buhl & P. Widmer, 2007. "Fatigue in long-duration travel diaries," Transportation, Springer, vol. 34(2), pages 143-160, March.
    5. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    6. Circella, Giovanni & Matson, Grant & Alemi, Farzad & Handy, Susan, 2019. "Panel Study of Emerging Transportation Technologies and Trends in California: Phase 2 Data Collection," Institute of Transportation Studies, Working Paper Series qt35x894mg, Institute of Transportation Studies, UC Davis.
    7. Felix Becker & Kay W. Axhausen, 2017. "Literature review on surveys investigating the acceptance of automated vehicles," Transportation, Springer, vol. 44(6), pages 1293-1306, November.
    8. Prateek Bansal & Kara M. Kockelman, 2018. "Are we ready to embrace connected and self-driving vehicles? A case study of Texans," Transportation, Springer, vol. 45(2), pages 641-675, March.
    9. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    10. Ahmad Termida, Nursitihazlin & Susilo, Yusak O. & Franklin, Joel P., 2016. "Observing dynamic behavioural responses due to the extension of a tram line by using panel survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 78-95.
    11. Anania, Emily C. & Rice, Stephen & Walters, Nathan W. & Pierce, Matthew & Winter, Scott R. & Milner, Mattie N., 2018. "The effects of positive and negative information on consumers’ willingness to ride in a driverless vehicle," Transport Policy, Elsevier, vol. 72(C), pages 218-224.
    12. Peng Jing & Gang Xu & Yuexia Chen & Yuji Shi & Fengping Zhan, 2020. "The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review," Sustainability, MDPI, vol. 12(5), pages 1-26, February.
    13. Benleulmi, Ahmed Ziad & Blecker, Thorsten, 2017. "Investigating the factors influencing the acceptance of fully autonomous cars," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Digitalization in Supply Chain Management and Logistics: Smart and Digital Solutions for an Industry 4.0 Environment. Proceedings of the Hamburg Inter, volume 23, pages 99-115, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    14. Necmi K. Avkiran & Christian M. Ringle (ed.), 2018. "Partial Least Squares Structural Equation Modeling," International Series in Operations Research and Management Science, Springer, number 978-3-319-71691-6, December.
    15. Susilo, Yusak O. & Cats, Oded, 2014. "Exploring key determinants of travel satisfaction for multi-modal trips by different traveler groups," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 366-380.
    16. Jia Guo & Yusak Susilo & Constantinos Antoniou & Anna Pernestål Brenden, 2020. "Influence of Individual Perceptions on the Decision to Adopt Automated Bus Services," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    17. Salonen, Arto O., 2018. "Passenger's subjective traffic safety, in-vehicle security and emergency management in the driverless shuttle bus in Finland," Transport Policy, Elsevier, vol. 61(C), pages 106-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nastjuk, Ilja & Herrenkind, Bernd & Marrone, Mauricio & Brendel, Alfred Benedikt & Kolbe, Lutz M., 2020. "What drives the acceptance of autonomous driving? An investigation of acceptance factors from an end-user's perspective," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    2. Kassens-Noor, Eva & Kotval-Karamchandani, Zeenat & Cai, Meng, 2020. "Willingness to ride and perceptions of autonomous public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 92-104.
    3. Kenesei, Zsófia & Ásványi, Katalin & Kökény, László & Jászberényi, Melinda & Miskolczi, Márk & Gyulavári, Tamás & Syahrivar, Jhanghiz, 2022. "Trust and perceived risk: How different manifestations affect the adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 379-393.
    4. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    5. Wu, Jingwen & Liao, Hua & Wang, Jin-Wei, 2020. "Analysis of consumer attitudes towards autonomous, connected, and electric vehicles: A survey in China," Research in Transportation Economics, Elsevier, vol. 80(C).
    6. Fatemeh Nazari & Mohamadhossein Noruzoliaee & Abolfazl Mohammadian, 2023. "Behavioral acceptance of automated vehicles: The roles of perceived safety concern and current travel behavior," Papers 2302.12225, arXiv.org, revised Jan 2024.
    7. Liu, Peng & Xu, Zhigang & Zhao, Xiangmo, 2019. "Road tests of self-driving vehicles: Affective and cognitive pathways in acceptance formation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 354-369.
    8. Guo, Yuntao & Souders, Dustin & Labi, Samuel & Peeta, Srinivas & Benedyk, Irina & Li, Yujie, 2021. "Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 364-398.
    9. Peng Jing & Gang Xu & Yuexia Chen & Yuji Shi & Fengping Zhan, 2020. "The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review," Sustainability, MDPI, vol. 12(5), pages 1-26, February.
    10. Tao, Tao & Cao, Jason, 2022. "Examining motivations for owning autonomous vehicles: Implications for land use and transportation," Journal of Transport Geography, Elsevier, vol. 102(C).
    11. Yavuz, Yigit Can, 2024. "Exploring university students’ acceptability of autonomous vehicles and urban air mobility," Journal of Air Transport Management, Elsevier, vol. 115(C).
    12. McLeay, Fraser & Olya, Hossein & Liu, Hongfei & Jayawardhena, Chanaka & Dennis, Charles, 2022. "A multi-analytical approach to studying customers motivations to use innovative totally autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    13. Bennett, Roger & Vijaygopal, Rohini & Kottasz, Rita, 2019. "Attitudes towards autonomous vehicles among people with physical disabilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 1-17.
    14. Du, Manqing & Zhang, Tingru & Liu, Jinting & Xu, Zhigang & Liu, Peng, 2022. "Rumors in the air? Exploring public misconceptions about automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 237-252.
    15. Xing, Yingying & Zhou, Huiyu & Han, Xiao & Zhang, Meng & Lu, Jian, 2022. "What influences vulnerable road users’ perceptions of autonomous vehicles? A comparative analysis of the 2017 and 2019 Pittsburgh surveys," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    16. Sharma, Ishant & Mishra, Sabyasachee, 2022. "Quantifying the consumer’s dependence on different information sources on acceptance of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 179-203.
    17. Md. Mokhlesur Rahman & Jean-Claude Thill, 2023. "What Drives People’s Willingness to Adopt Autonomous Vehicles? A Review of Internal and External Factors," Sustainability, MDPI, vol. 15(15), pages 1-29, July.
    18. Ahmed, Tanjeeb & Hyland, Michael & Sarma, Navjyoth J.S. & Mitra, Suman & Ghaffar, Arash, 2020. "Quantifying the employment accessibility benefits of shared automated vehicle mobility services: Consumer welfare approach using logsums," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 221-247.
    19. Petrović, Đorđe & Mijailović, Radomir M. & Pešić, Dalibor, 2022. "Persons with physical disabilities and autonomous vehicles: The perspective of the driving status," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 98-110.
    20. Maeng, Kyuho & Jeon, Seung Ryong & Park, Taeho & Cho, Youngsang, 2021. "Network effects of connected and autonomous vehicles in South Korea: A consumer preference approach," Research in Transportation Economics, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:155:y:2022:i:c:p:450-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.