IDEAS home Printed from https://ideas.repec.org/a/wly/intnem/v27y2017i1ne1962.html
   My bibliography  Save this article

An accurate traffic classification model based on support vector machines

Author

Listed:
  • Jie Cao
  • Zhiyi Fang
  • Guannan Qu
  • Hongyu Sun
  • Dan Zhang

Abstract

Network traffic classification is a fundamental research topic on high‐performance network protocol design and network operation management. Compared with other state‐of‐the‐art studies done on the network traffic classification, machine learning (ML) methods are more flexible and intelligent, which can automatically search for and describe useful structural patterns in a supplied traffic dataset. As a typical ML method, support vector machines (SVMs) based on statistical theory has high classification accuracy and stability. However, the performance of SVM classifier can be severely affected by the data scale, feature dimension, and parameters of the classifier. In this paper, a real‐time accurate SVM training model named SPP‐SVM is proposed. An SPP‐SVM is deducted from the scaling dataset and employs principal component analysis (PCA) to extract data features and verify its relevant traffic features obtained from PCA. By employing PCA algorithm to do the dimension extraction, SPP‐SVM confirms the critical component features, reduces the redundancy among them, and lowers the original feature dimension so as to reduce the over fitting and increase its generalization effectively. The optimal working parameters of kernel function used in SPP‐SVM are derived automatically from improved particle swarm optimization algorithm, which will optimize the global solution and make its inertia weight coefficient adaptive without searching for the parameters in a wide range, traversing all the parameter points in the grid and adjusting steps gradually. The performance of its two‐ and multi‐class classifiers is proved over 2 sets of traffic traces, coming from different topological points on the Internet. Experiments show that the SPP‐SVM's two‐ and multi‐class classifiers are superior to the typical supervised ML algorithms and performs significantly better than traditional SVM in classification accuracy, dimension, and elapsed time.

Suggested Citation

  • Jie Cao & Zhiyi Fang & Guannan Qu & Hongyu Sun & Dan Zhang, 2017. "An accurate traffic classification model based on support vector machines," International Journal of Network Management, John Wiley & Sons, vol. 27(1), January.
  • Handle: RePEc:wly:intnem:v:27:y:2017:i:1:n:e1962
    DOI: 10.1002/nem.1962
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nem.1962
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nem.1962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Zeyang & Wang, Wei & Lu, Jian & Xing, Xue, 2020. "Classifying the traffic state of urban expressways: A machine-learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 411-428.
    2. Wang, Chun & Zhang, Weihua & Wu, Cong & Hu, Heng & Ding, Heng & Zhu, Wenjia, 2022. "A traffic state recognition model based on feature map and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    3. Tian, Zhongda, 2020. "Chaotic characteristic analysis of network traffic time series at different time scales," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:intnem:v:27:y:2017:i:1:n:e1962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1190 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.