IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v178y2023ics0191261523001728.html
   My bibliography  Save this article

Day-to-day traffic control for networks mixed with regular human-piloted and connected autonomous vehicles

Author

Listed:
  • Liang, Qingnan
  • Li, Xin-an
  • Chen, Zhibin
  • Pan, Tianlu
  • Zhong, Renxin

Abstract

The emerging connected autonomous vehicle (CAV) technology offers a significant opportunity to address the congestion problem caused by the selfish routing behavior of human drivers. If the transportation management center (TMC) can control the routing of all vehicles on the network, they could easily reverse this effect. However, during the transition period, CAVs will share roads with human-piloted vehicles (HVs). In the era of mixed autonomy, a more realistic scenario is to route the CAVs to lead the traffic state towards the desired equilibrium. We first consider a repeated routing game in which the TMC can control the routes of CAVs to minimize the system travel time, i.e., CAVs follow the system optimal (SO) routing principle. In this manner, we can influence the travel time traversing each link, which indirectly influences HV users’ route choices. As a consequence, HV users may adjust their routes dynamically through day-to-day (DTD) learning to minimize individual travel cost. On the other hand, the SO routing strategy may induce higher travel time for CAVs than HVs within the same origin–destination (OD) pair. To address such inherent unfairness, road pricing is used to influence route choices of HVs to achieve specific supply regulation targets, e.g., traffic restraint. We present qualitative analysis on the stability of the controlled DTD dynamics and the effect of road pricing regarding the unfairness. To the best of our knowledge, this paper is one of the first to design dynamic pricing schemes for a mixed autonomy system under DTD learning dynamics. We carry out numerical experiments to demonstrate the effectiveness of the control schemes. The cooperative CAVs could reduce the total travel time when the market penetration rate of CAVs reaches the lower minimum control ratio that the network could escape the user equilibrium (UE) condition. When the market penetration rate of CAVs reaches the upper minimum control ratio, the network would achieve SO condition even though there are non-cooperative HVs. On the other hand, the pricing scheme can reduce the unfairness index and total travel time of the network when the market penetration rate of CAVs is low.

Suggested Citation

  • Liang, Qingnan & Li, Xin-an & Chen, Zhibin & Pan, Tianlu & Zhong, Renxin, 2023. "Day-to-day traffic control for networks mixed with regular human-piloted and connected autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:transb:v:178:y:2023:i:c:s0191261523001728
    DOI: 10.1016/j.trb.2023.102847
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523001728
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.102847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terry L. Friesz & David Bernstein & Nihal J. Mehta & Roger L. Tobin & Saiid Ganjalizadeh, 1994. "Day-To-Day Dynamic Network Disequilibria and Idealized Traveler Information Systems," Operations Research, INFORMS, vol. 42(6), pages 1120-1136, December.
    2. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    3. Pudāne, Baiba & Correia, Gonçalo, 2020. "On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey – A comment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 324-328.
    4. Yang, Hai & Meng, Qiang & Lee, Der-Horng, 2004. "Trial-and-error implementation of marginal-cost pricing on networks in the absence of demand functions," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 477-493, July.
    5. Wang, Jian & Peeta, Srinivas & He, Xiaozheng, 2019. "Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 139-168.
    6. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    7. Zhang, Ding & Nagurney, Anna & Wu, Jiahao, 2001. "On the equivalence between stationary link flow patterns and traffic network equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 731-748, September.
    8. Yang, Hai & Zhang, Xiaoning & Meng, Qiang, 2007. "Stackelberg games and multiple equilibrium behaviors on networks," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 841-861, October.
    9. Yang, Fan & Zhang, Ding, 2009. "Day-to-day stationary link flow pattern," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 119-126, January.
    10. Zhang, Fang & Lu, Jian & Hu, Xiaojian, 2022. "Integrated path controlling and subsidy scheme for mobility and environmental management in automated transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    11. Sandholm, William H., 2005. "Excess payoff dynamics and other well-behaved evolutionary dynamics," Journal of Economic Theory, Elsevier, vol. 124(2), pages 149-170, October.
    12. Bahrami, Sina & Roorda, Matthew J., 2020. "Optimal traffic management policies for mixed human and automated traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 130-143.
    13. Zhang, Ding & Nagurney, Anna, 1996. "On the local and global stability of a travel route choice adjustment process," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 245-262, August.
    14. Smith, M. J., 1983. "The existence and calculation of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 17(4), pages 291-303, August.
    15. Olaf Jahn & Rolf H. Möhring & Andreas S. Schulz & Nicolás E. Stier-Moses, 2005. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Operations Research, INFORMS, vol. 53(4), pages 600-616, August.
    16. Michael J. Smith, 1984. "The Stability of a Dynamic Model of Traffic Assignment---An Application of a Method of Lyapunov," Transportation Science, INFORMS, vol. 18(3), pages 245-252, August.
    17. Correia, Gonçalo Homem de Almeida & Looff, Erwin & van Cranenburgh, Sander & Snelder, Maaike & van Arem, Bart, 2019. "On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 359-382.
    18. Li, Ruijie & Liu, Xiaobo & Nie, Yu (Marco), 2018. "Managing partially automated network traffic flow: Efficiency vs. stability," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 300-324.
    19. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    20. Zhou, Bojian & Bliemer, Michiel & Yang, Hai & He, Jie, 2015. "A trial-and-error congestion pricing scheme for networks with elastic demand and link capacity constraints," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 77-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiang & Sun, Haojie & Pei, Xiaoyang & Guan, Linghui & Wang, Zihao, 2024. "Evolution of technology investment and development of robotaxi services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    2. Ren, Wenhao & Zhao, Xiaohua & Li, Haijian & Fu, Qiang, 2024. "Traffic flow impact of mixed heterogeneous platoons on highways: an approach combining driving simulation and microscopic traffic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    3. Fan, Qiaochu & van Essen, J. Theresia & Correia, Gonçalo H.A., 2024. "A bi-level framework for heterogeneous fleet sizing of ride-hailing services considering an approximated mixed equilibrium between automated and non-automated traffic," European Journal of Operational Research, Elsevier, vol. 315(3), pages 879-898.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren-Yong Guo & Hai-Jun Huang & Hai Yang, 2019. "Tradable Credit Scheme for Control of Evolutionary Traffic Flows to System Optimum: Model and its Convergence," Networks and Spatial Economics, Springer, vol. 19(3), pages 833-868, September.
    2. Farokhi, Farhad & Johansson, Karl H., 2015. "A piecewise-constant congestion taxing policy for repeated routing games," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 123-143.
    3. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    4. Ren-Yong Guo & Hai Yang & Hai-Jun Huang & Zhijia Tan, 2016. "Day-to-Day Flow Dynamics and Congestion Control," Transportation Science, INFORMS, vol. 50(3), pages 982-997, August.
    5. Li, Pengbo & Tian, Lijun & Xiao, Feng & Zhu, Hongwei, 2022. "Can day-to-day dynamic model be solved analytically? New insights on portraying equilibrium and accommodating autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 374-395.
    6. Han, Linghui & Wang, David Z.W. & Lo, Hong K. & Zhu, Chengjuan & Cai, Xingju, 2017. "Discrete-time day-to-day dynamic congestion pricing scheme considering multiple equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 1-16.
    7. Minyu Shen & Feng Xiao & Weihua Gu & Hongbo Ye, 2024. "Cognitive Hierarchy in Day-to-day Network Flow Dynamics," Papers 2409.11908, arXiv.org.
    8. Peeta, Srinivas, 2016. "A marginal utility day-to-day traffic evolution model based on one-step strategic thinkingAuthor-Name: He, Xiaozheng," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 237-255.
    9. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    10. Iryo, Takamasa, 2019. "Instability of departure time choice problem: A case with replicator dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 353-364.
    11. Kumar, Amit & Peeta, Srinivas, 2015. "A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 235-256.
    12. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    13. Ye, Hongbo & Yang, Hai & Tan, Zhijia, 2015. "Learning marginal-cost pricing via a trial-and-error procedure with day-to-day flow dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 794-807.
    14. Li, Ruijie & Liu, Xiaobo & Nie, Yu (Marco), 2018. "Managing partially automated network traffic flow: Efficiency vs. stability," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 300-324.
    15. Lie Han, 2022. "Proportional-Switch Adjustment Process with Elastic Demand and Congestion Toll in the Absence of Demand Functions," Networks and Spatial Economics, Springer, vol. 22(4), pages 709-735, December.
    16. Hongbo Ye & Hai Yang, 2017. "Rational Behavior Adjustment Process with Boundedly Rational User Equilibrium," Transportation Science, INFORMS, vol. 51(3), pages 968-980, August.
    17. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Tan, Zhijia, 2015. "Link-based day-to-day network traffic dynamics and equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 248-260.
    18. Wei Nai & Zan Yang & Dan Li & Lu Liu & Yuting Fu & Yuao Guo, 2024. "Urban Day-to-Day Travel and Its Development in an Information Environment: A Review," Sustainability, MDPI, vol. 16(6), pages 1-29, March.
    19. Iryo, Takamasa & Watling, David, 2019. "Properties of equilibria in transport problems with complex interactions between users," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 87-114.
    20. He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2010. "A link-based day-to-day traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 597-608, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:178:y:2023:i:c:s0191261523001728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.