IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt58t7674n.html
   My bibliography  Save this paper

A Quantitative Investigation into the Impact of Partially Automated Vehicles on Vehicle Miles Travelled in California

Author

Listed:
  • Hardman, Scott PhD
  • Chakraborty, Debapriya PhD
  • Kohn, Eben

Abstract

This project investigated changes in travel behavior by owners of partially automated electric vehicles. Partial automation can control vehicle speed and steering using sensors that monitor the external environment. The researchers used review results from survey responses including 940 users of partial automation, of which 628 who have Tesla Autopilot and 312 with systems from other automakers. Autopilot users report using automation more than users of other partial automation systems. Autopilot has the largest impact on travel, notably 36% of Autopilot users reporting more longdistance travel. Respondents who are younger, have a lower household income, use automation in a greater variety of traffic, roads, and weather conditions, and those who have pro-technology attitudes and outdoor lifestyles are more likely to report doing more long-distance travel. The project used propensity score matching to investigate whether automation leads to any increase in respondents’ annual vehicle miles travelled. For simplicity, the researchers focused only on the impact of Tesla Autopilot and found that automation results in an average of 4,884 more miles being driven per year.

Suggested Citation

  • Hardman, Scott PhD & Chakraborty, Debapriya PhD & Kohn, Eben, 2021. "A Quantitative Investigation into the Impact of Partially Automated Vehicles on Vehicle Miles Travelled in California," Institute of Transportation Studies, Working Paper Series qt58t7674n, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt58t7674n
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/58t7674n.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
    2. Mokhtarian, Patricia L & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," University of California Transportation Center, Working Papers qt8bz3z5qm, University of California Transportation Center.
    3. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    4. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    5. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    6. Hardman, Scott PhD, 2020. "Travel Behavior Changes Among Users of Partially Automated Vehicles," Institute of Transportation Studies, Working Paper Series qt8p0351m1, Institute of Transportation Studies, UC Davis.
    7. Mokhtarian, Patricia L. & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 204-228, March.
    8. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    9. Pinjari, Abdul Rawoof & Bhat, Chandra R. & Hensher, David A., 2009. "Residential self-selection effects in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 729-748, August.
    10. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    11. Axsen, Jonn & Bailey, Joseph & Castro, Marisol Andrea, 2015. "Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers," Energy Economics, Elsevier, vol. 50(C), pages 190-201.
    12. Tingting Wang & Cynthia Chen, 2014. "Impact of fuel price on vehicle miles traveled (VMT): do the poor respond in the same way as the rich?," Transportation, Springer, vol. 41(1), pages 91-105, January.
    13. Hardman, Scott & Lee, Jae Hyun & Tal, Gil, 2019. "How do drivers use automation? Insights from a survey of partially automated vehicle owners in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 246-256.
    14. Aggelos Soteropoulos & Martin Berger & Francesco Ciari, 2019. "Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 29-49, January.
    15. White, Lee V. & Sintov, Nicole D., 2017. "You are what you drive: Environmentalist and social innovator symbolism drives electric vehicle adoption intentions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 94-113.
    16. Mustapha Harb & Yu Xiao & Giovanni Circella & Patricia L. Mokhtarian & Joan L. Walker, 2018. "Projecting travelers into a world of self-driving vehicles: estimating travel behavior implications via a naturalistic experiment," Transportation, Springer, vol. 45(6), pages 1671-1685, November.
    17. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asmussen, Katherine E. & Mondal, Aupal & Bhat, Chandra R., 2022. "Adoption of partially automated vehicle technology features and impacts on vehicle miles of travel (VMT)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 156-179.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias N. Sweet & Kailey Laidlaw, 2020. "No longer in the driver’s seat: How do affective motivations impact consumer interest in automated vehicles?," Transportation, Springer, vol. 47(5), pages 2601-2634, October.
    2. Mohamed, Moataz & Higgins, Christopher D. & Ferguson, Mark & Réquia, Weeberb J., 2018. "The influence of vehicle body type in shaping behavioural intention to acquire electric vehicles: A multi-group structural equation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 54-72.
    3. Bhat, Chandra R. & Astroza, Sebastian & Sidharthan, Raghuprasad & Alam, Mohammad Jobair Bin & Khushefati, Waleed H., 2014. "A joint count-continuous model of travel behavior with selection based on a multinomial probit residential density choice model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 31-51.
    4. Hardman, Scott PhD, 2020. "Travel Behavior Changes Among Users of Partially Automated Vehicles," Institute of Transportation Studies, Working Paper Series qt8p0351m1, Institute of Transportation Studies, UC Davis.
    5. Esko Lehtonen & Johanna Wörle & Fanny Malin & Barbara Metz & Satu Innamaa, 2022. "Travel experience matters: Expected personal mobility impacts after simulated L3/L4 automated driving," Transportation, Springer, vol. 49(5), pages 1295-1314, October.
    6. Rezaei, Ali & Patterson, Zachary, 2018. "Preference stability in household location choice: Using cross-sectional data from three censuses," Research in Transportation Economics, Elsevier, vol. 67(C), pages 44-53.
    7. Olaru, Doina & Smith, Brett & Taplin, John H.E., 2011. "Residential location and transit-oriented development in a new rail corridor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(3), pages 219-237, March.
    8. Naveen Eluru & Chandra Bhat & Ram Pendyala & Karthik Konduri, 2010. "A joint flexible econometric model system of household residential location and vehicle fleet composition/usage choices," Transportation, Springer, vol. 37(4), pages 603-626, July.
    9. Bhat, Chandra R. & Astroza, Sebastian & Bhat, Aarti C. & Nagel, Kai, 2016. "Incorporating a multiple discrete-continuous outcome in the generalized heterogeneous data model: Application to residential self-selection effects analysis in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 52-76.
    10. Sovacool, Benjamin K. & Axsen, Jonn, 2018. "Functional, symbolic and societal frames for automobility: Implications for sustainability transitions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 730-746.
    11. Macfarlane, Gregory S. & Garrow, Laurie A. & Mokhtarian, Patricia L., 2015. "The influences of past and present residential locations on vehicle ownership decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 186-200.
    12. Chowdhury, Tufayel & Scott, Darren M., 2020. "An analysis of the built environment and auto travel in Halifax, Canada," Transport Policy, Elsevier, vol. 94(C), pages 23-33.
    13. Hardman, Scott & Tal, Gil, 2021. "Discontinuance Among California’s Electric Vehicle Buyers: Why are Some Consumers Abandoning Electric Vehicles?," Institute of Transportation Studies, Working Paper Series qt11n6f4hs, Institute of Transportation Studies, UC Davis.
    14. Rahman, Moshiur & Yasmin, Shamsunnahar & Eluru, Naveen, 2019. "Controlling for endogeneity between bus headway and bus ridership: A case study of the Orlando region," Transport Policy, Elsevier, vol. 81(C), pages 208-219.
    15. Biying, Yu & Zhang, Junyi & Fujiwara, Akimasa, 2012. "Analysis of the residential location choice and household energy consumption behavior by incorporating multiple self-selection effects," Energy Policy, Elsevier, vol. 46(C), pages 319-334.
    16. Zhang, Junyi, 2014. "Revisiting residential self-selection issues: A life-oriented approach," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(3), pages 29-45.
    17. Kim, Moon-Koo & Oh, Jeesun & Park, Jong-Hyun & Joo, Changlim, 2018. "Perceived value and adoption intention for electric vehicles in Korea: Moderating effects of environmental traits and government supports," Energy, Elsevier, vol. 159(C), pages 799-809.
    18. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    19. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    20. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).

    More about this item

    Keywords

    Engineering; Electric vehicles; intelligent vehicles; level 2 driving automation; travel behavior; travel models; vehicle miles of travel; surveys;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt58t7674n. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.