Multidimensional indicators to identify emerging technologies: Perspective of technological knowledge flow
Author
Abstract
Suggested Citation
DOI: 10.1016/j.joi.2023.101483
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
- Yuan Zhou & Heng Lin & Yufei Liu & Wei Ding, 2019. "A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 167-185, July.
- Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
- Andrew G Taylor & Clinton Mielke & John Mongan, 2018. "Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-15, November.
- Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
- Xiangbin Liu & Liping Song & Shuai Liu & Yudong Zhang, 2021. "A Review of Deep-Learning-Based Medical Image Segmentation Methods," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
- Jeffrey Kuhn & Kenneth Younge & Alan Marco, 2020. "Patent citations reexamined," RAND Journal of Economics, RAND Corporation, vol. 51(1), pages 109-132, March.
- Sam Arts & Bruno Cassiman & Juan Carlos Gomez, 2018.
"Text matching to measure patent similarity,"
Strategic Management Journal, Wiley Blackwell, vol. 39(1), pages 62-84, January.
- Sam Arts & Bruno Cassiman & Juan Carlos Gomez, 2017. "Text matching to measure patent similarity," Working Papers of Department of Management, Strategy and Innovation, Leuven 590543, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
- Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
- Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.
- Hou, Jianhua & Tang, Shiqi & Zhang, Yang & Song, Haoyang, 2023. "Does prior knowledge affect patent technology diffusion? A semantic-based patent citation contribution analysis," Journal of Informetrics, Elsevier, vol. 17(2).
- Yue Wu & Xin Gu & Zhenzhou Tu & Zhaobohan Zhang, 2022. "System dynamic analysis on industry-university-research institute synergetic innovation process based on knowledge flow," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1317-1338, March.
- Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
- Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015.
"What is an emerging technology?,"
Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
- Daniele Rotolo & Diana Hicks & Ben Martin, 2015. "What is an emerging technology?," SPRU Working Paper Series 2015-06, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Noh, Heeyong & Song, Young-Keun & Lee, Sungjoo, 2016. "Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations," Telecommunications Policy, Elsevier, vol. 40(10), pages 956-970.
- Clayton, Paige & Lanahan, Lauren & Nelson, Andrew, 2022. "Dissecting diffusion: Tracing the plurality of factors that shape knowledge diffusion," Research Policy, Elsevier, vol. 51(1).
- Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016.
"Measuring technological novelty with patent-based indicators,"
Research Policy, Elsevier, vol. 45(3), pages 707-723.
- Dennis Verhoeven & Jurriën Bakker & Reinhilde Veugelers, 2015. "Measuring technological novelty with patent-based indicators," Working Papers of Department of Management, Strategy and Innovation, Leuven 501835, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
- Arts, Sam & Hou, Jianan & Gomez, Juan Carlos, 2021. "Natural language processing to identify the creation and impact of new technologies in patent text: Code, data, and new measures," Research Policy, Elsevier, vol. 50(2).
- Joung, Junegak & Kim, Kwangsoo, 2017. "Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 281-292.
- Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
- Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
- Qiang Gao & Xiao Huang & Ke Dong & Zhentao Liang & Jiang Wu, 2022. "Semantic-enhanced topic evolution analysis: a combination of the dynamic topic model and word2vec," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1543-1563, March.
- Hsini Huang, 2020. "The effect of the small-firm dominated ecology on regional innovation," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 65(3), pages 703-725, December.
- Porter, Alan L. & Garner, Jon & Carley, Stephen F. & Newman, Nils C., 2019. "Emergence scoring to identify frontier R&D topics and key players," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 628-643.
- Qi Wang, 2018. "A bibliometric model for identifying emerging research topics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(2), pages 290-304, February.
- Thomas W. Steele & Jeffrey C. Stier, 2000. "The impact of interdisciplinary research in the environmental sciences: a forestry case study," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 51(5), pages 476-484.
- Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
- Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Xu, Haiyun & Yang, Guancan, 2022. "A semantic main path analysis method to identify multiple developmental trajectories," Journal of Informetrics, Elsevier, vol. 16(2).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qiang Gao & Man Jiang, 2024. "Exploring technology fusion by combining latent Dirichlet allocation with Doc2vec: a case of digital medicine and machine learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4043-4070, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.
- Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
- Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
- Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
- Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Ryosuke L. Ohniwa & Kunio Takeyasu & Aiko Hibino, 2022. "Researcher dynamics in the generation of emerging topics in life sciences and medicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 871-884, February.
- Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
- Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
- Ante, Lennart, 2022. "The relationship between readability and scientific impact: Evidence from emerging technology discourses," Journal of Informetrics, Elsevier, vol. 16(1).
- Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
- Uijun Kwon & Youngjung Geum, 2020. "Identification of promising inventions considering the quality of knowledge accumulation: a machine learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1877-1897, December.
- Waßenhoven, Anna & Rennings, Michael & Laibach, Natalie & Bröring, Stefanie, 2023. "What constitutes a “Key Enabling Technology” for transition processes: Insights from the bioeconomy's technological landscape," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
- Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
- Peter Sjögårde & Fereshteh Didegah, 2022. "The association between topic growth and citation impact of research publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 1903-1921, April.
- Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
- Serhat Burmaoglu & Olivier Sartenaer & Alan Porter & Munan Li, 2019. "Analysing the theoretical roots of technology emergence: an evolutionary perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 97-118, April.
- Yang, Zaoli & Zhang, Weijian & Yuan, Fei & Islam, Nazrul, 2021. "Measuring topic network centrality for identifying technology and technological development in online communities," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
- Mathis, Bryan & Ohniwa, Ryosuke L., 2024. "Trends in emerging topics generation across countries in life science and medicine," Journal of Informetrics, Elsevier, vol. 18(3).
- Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
More about this item
Keywords
Emerging technologies; Technological knowledge flow; Technology innovation; Scientometric indicators; Digital medical technology;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:1:s1751157723001086. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.