Modeling production disorder: Procedures for digital twins of flexibility-driven manufacturing systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijpe.2023.108846
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
- Da Silveira, Giovani & Borenstein, Denis & Fogliatto, Flavio S., 2001. "Mass customization: Literature review and research directions," International Journal of Production Economics, Elsevier, vol. 72(1), pages 1-13, June.
- Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
- Marshall L. Fisher & Christopher D. Ittner, 1999. "The Impact of Product Variety on Automobile Assembly Operations: Empirical Evidence and Simulation Analysis," Management Science, INFORMS, vol. 45(6), pages 771-786, June.
- Yongxin Liao & Fernando Deschamps & Eduardo de Freitas Rocha Loures & Luiz Felipe Pierin Ramos, 2017. "Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal," International Journal of Production Research, Taylor & Francis Journals, vol. 55(12), pages 3609-3629, June.
- Elisa Negri & Vibhor Pandhare & Laura Cattaneo & Jaskaran Singh & Marco Macchi & Jay Lee, 2021. "Field-synchronized Digital Twin framework for production scheduling with uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1207-1228, April.
- Guanghui Zhou & Chao Zhang & Zhi Li & Kai Ding & Chuang Wang, 2020. "Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(4), pages 1034-1051, February.
- Kai Ding & Felix T.S. Chan & Xudong Zhang & Guanghui Zhou & Fuqiang Zhang, 2019. "Defining a Digital Twin-based Cyber-Physical Production System for autonomous manufacturing in smart shop floors," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6315-6334, October.
- Guo, Z.X. & Ngai, E.W.T. & Yang, Can & Liang, Xuedong, 2015. "An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment," International Journal of Production Economics, Elsevier, vol. 159(C), pages 16-28.
- Jinjiang Wang & Lunkuan Ye & Robert X. Gao & Chen Li & Laibin Zhang, 2019. "Digital Twin for rotating machinery fault diagnosis in smart manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3920-3934, June.
- Gansterer, Margaretha & Almeder, Christian & Hartl, Richard F., 2014. "Simulation-based optimization methods for setting production planning parameters," International Journal of Production Economics, Elsevier, vol. 151(C), pages 206-213.
- Fogliatto, Flavio S. & da Silveira, Giovani J.C. & Borenstein, Denis, 2012. "The mass customization decade: An updated review of the literature," International Journal of Production Economics, Elsevier, vol. 138(1), pages 14-25.
- Jan L.G. Dietz & Jan A.P. Hoogervorst & Antonia Albani & David Aveiro & Eduard Babkin & Joseph Barjis & Artur Caetano & Philip Huysmans & Junichi Iijima & Steven J.H. Van Kervel & Hans Mulder & Martin, 2013. "The discipline of enterprise engineering," International Journal of Organisational Design and Engineering, Inderscience Enterprises Ltd, vol. 3(1), pages 86-114.
- Dalenogare, Lucas Santos & Benitez, Guilherme Brittes & Ayala, Néstor Fabián & Frank, Alejandro Germán, 2018. "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, Elsevier, vol. 204(C), pages 383-394.
- Donald Gerwin, 1993. "Manufacturing Flexibility: A Strategic Perspective," Management Science, INFORMS, vol. 39(4), pages 395-410, April.
- Buzacott, John A., 2000. "Service system structure," International Journal of Production Economics, Elsevier, vol. 68(1), pages 15-27, October.
- Culot, Giovanna & Orzes, Guido & Sartor, Marco & Nassimbeni, Guido, 2020. "The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
- Konstantinos Mykoniatis & Gregory A. Harris, 2021. "A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1899-1911, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Büchi, Giacomo & Cugno, Monica & Castagnoli, Rebecca, 2020. "Smart factory performance and Industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
- Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
- Culot, Giovanna & Orzes, Guido & Sartor, Marco & Nassimbeni, Guido, 2020. "The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
- Kamble, Sachin S & Gunasekaran, Angappa & Parekh, Harsh & Mani, Venkatesh & Belhadi, Amine & Sharma, Rohit, 2022. "Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
- Lyons, Andrew Charles & Um, Juneho & Sharifi, Hossein, 2020. "Product variety, customisation and business process performance: A mixed-methods approach to understanding their relationships," International Journal of Production Economics, Elsevier, vol. 221(C).
- Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
- Na Liu & Pui-Sze Chow & Hongshan Zhao, 2020. "Challenges and critical successful factors for apparel mass customization operations: recent development and case study," Annals of Operations Research, Springer, vol. 291(1), pages 531-563, August.
- Sandrin, Enrico & Trentin, Alessio & Forza, Cipriano, 2018. "Leveraging high-involvement practices to develop mass customization capability: A contingent configurational perspective," International Journal of Production Economics, Elsevier, vol. 196(C), pages 335-345.
- Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
- Gedas Baranauskas & Agota Giedrė Raišienė & Renata Korsakienė, 2020. "Mapping the Scientific Research on Mass Customization Domain: A Critical Review and Bibliometric Analysis," JRFM, MDPI, vol. 13(9), pages 1-20, September.
- Kendrik Yan Hong Lim & Pai Zheng & Chun-Hsien Chen, 2020. "A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1313-1337, August.
- Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
- Siqing Shan & Xin Wen & Yigang Wei & Zijin Wang & Yong Chen, 2020. "Intelligent manufacturing in industry 4.0: A case study of Sany heavy industry," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 679-690, July.
- Natália Barbosa, 2024. "Artificial Intelligence and exporting performance:Firm-level evidence from Portugal," GEE Papers 183, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Sep 2024.
- Bai, Chunguang & Dallasega, Patrick & Orzes, Guido & Sarkis, Joseph, 2020. "Industry 4.0 technologies assessment: A sustainability perspective," International Journal of Production Economics, Elsevier, vol. 229(C).
- Peerally, Jahan Ara & Santiago, Fernando & De Fuentes, Claudia & Moghavvemi, Sedigheh, 2022. "Towards a firm-level technological capability framework to endorse and actualize the Fourth Industrial Revolution in developing countries," Research Policy, Elsevier, vol. 51(10).
- Christian Hoyer & Indra Gunawan & Carmen Haule Reaiche, 2020. "The Implementation of Industry 4.0 – A Systematic Literature Review of the Key Factors," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 557-578, July.
- Sundarakani, Balan & Ajaykumar, Aneesh & Gunasekaran, Angappa, 2021. "Big data driven supply chain design and applications for blockchain: An action research using case study approach," Omega, Elsevier, vol. 102(C).
- Liu, Weihua & Wang, Qian & Mao, Qiaomei & Wang, Shuqing & Zhu, Donglei, 2015. "A scheduling model of logistics service supply chain based on the mass customization service and uncertainty of FLSP’s operation time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 189-215.
- A. Arrighetti & F. Landini, 2018. "Eterogeneità delle imprese e stagnazione del capitalismo italiano," Economics Department Working Papers 2018-EP01, Department of Economics, Parma University (Italy).
More about this item
Keywords
Digital twin; Simulation; Flexible manufacturing systems; Internet-of-things; Smart manufacturing; Cyber-physical systems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:260:y:2023:i:c:s0925527323000786. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.