IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i12p3920-3934.html
   My bibliography  Save this article

Digital Twin for rotating machinery fault diagnosis in smart manufacturing

Author

Listed:
  • Jinjiang Wang
  • Lunkuan Ye
  • Robert X. Gao
  • Chen Li
  • Laibin Zhang

Abstract

With significant advancement in information technologies, Digital Twin has gained increasing attention as it offers an enabling tool to realise digitally-driven, cloud-enabled manufacturing. Given the nonlinear dynamics and uncertainty involved during the process of machinery degradation, proper design and adaptability of a Digital Twin model remain a challenge. This paper presents a Digital Twin reference model for rotating machinery fault diagnosis. The requirements for constructing the Digital Twin model are discussed, and a model updating scheme based on parameter sensitivity analysis is proposed to enhance the model adaptability. Experimental data are collected from a rotor system that emulates an unbalance fault and its progression. The data are then input to a Digital Twin model of the rotor system to investigate its ability of unbalance quantification and localisation for fault diagnosis. The results show that the constructed Digital Twin rotor model enables accurate diagnosis and adaptive degradation analysis.

Suggested Citation

  • Jinjiang Wang & Lunkuan Ye & Robert X. Gao & Chen Li & Laibin Zhang, 2019. "Digital Twin for rotating machinery fault diagnosis in smart manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3920-3934, June.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3920-3934
    DOI: 10.1080/00207543.2018.1552032
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2018.1552032
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2018.1552032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    2. Siyi Ding & Xiaohu Zheng & Mingyu Wu & Qirui Yang, 2022. "A Novel Sustainable Processing Mode for Burr Classified Prediction of Weak Rigid Drilling Process Using a Fusion Modeling Method," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    3. Loske, Dominik & Klumpp, Matthias, 2020. "Simulating the impact of digitalization on retail logistics efficiency," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Lo, volume 29, pages 77-111, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Chen, Kang & Zhu, Xu & Anduv, Burkay & Jin, Xinqiao & Du, Zhimin, 2022. "Digital twins model and its updating method for heating, ventilation and air conditioning system using broad learning system algorithm," Energy, Elsevier, vol. 251(C).
    5. Zhicheng Xu & Vignesh Selvaraj & Sangkee Min, 2024. "State identification of a 5-axis ultra-precision CNC machine tool using energy consumption data assisted by multi-output densely connected 1D-CNN model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 147-160, January.
    6. Maurizio Bevilacqua & Eleonora Bottani & Filippo Emanuele Ciarapica & Francesco Costantino & Luciano Di Donato & Alessandra Ferraro & Giovanni Mazzuto & Andrea Monteriù & Giorgia Nardini & Marco Orten, 2020. "Digital Twin Reference Model Development to Prevent Operators’ Risk in Process Plants," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    7. Sami Bouzid & Philippe Viarouge & Jérôme Cros, 2020. "Real-Time Digital Twin of a Wound Rotor Induction Machine Based on Finite Element Method," Energies, MDPI, vol. 13(20), pages 1-18, October.
    8. Neto, Anis Assad & Ribeiro da Silva, Elias & Deschamps, Fernando & do Nascimento Junior, Laercio Alves & Pinheiro de Lima, Edson, 2023. "Modeling production disorder: Procedures for digital twins of flexibility-driven manufacturing systems," International Journal of Production Economics, Elsevier, vol. 260(C).
    9. Georgios Falekas & Athanasios Karlis, 2021. "Digital Twin in Electrical Machine Control and Predictive Maintenance: State-of-the-Art and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-26, September.
    10. Ke Luo & Yingying Jiao, 2021. "Automatic fault detection of sensors in leather cutting control system under GWO-SVM algorithm," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-24, March.
    11. Kamble, Sachin S & Gunasekaran, Angappa & Parekh, Harsh & Mani, Venkatesh & Belhadi, Amine & Sharma, Rohit, 2022. "Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    12. Musawenkosi Lethumcebo Thanduxolo Zulu & Rudiren Pillay Carpanen & Remy Tiako, 2023. "A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks," Energies, MDPI, vol. 16(4), pages 1-32, February.
    13. Xia, Min & Shao, Haidong & Williams, Darren & Lu, Siliang & Shu, Lei & de Silva, Clarence W., 2021. "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Kendrik Yan Hong Lim & Pai Zheng & Chun-Hsien Chen, 2020. "A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1313-1337, August.
    16. Alessandro Fontana & Andrea Barni & Deborah Leone & Maurizio Spirito & Agata Tringale & Matteo Ferraris & Joao Reis & Gil Goncalves, 2021. "Circular Economy Strategies for Equipment Lifetime Extension: A Systematic Review," Sustainability, MDPI, vol. 13(3), pages 1-28, January.
    17. Hussein A. Taha & Soumaya Yacout & Yasser Shaban, 2023. "Autonomous self-healing mechanism for a CNC milling machine based on pattern recognition," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2185-2205, June.
    18. Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Zhang, Yongchao & Ji, J.C. & Ren, Zhaohui & Ni, Qing & Gu, Fengshou & Feng, Ke & Yu, Kun & Ge, Jian & Lei, Zihao & Liu, Zheng, 2023. "Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:12:p:3920-3934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.