IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i4p1034-1051.html
   My bibliography  Save this article

Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing

Author

Listed:
  • Guanghui Zhou
  • Chao Zhang
  • Zhi Li
  • Kai Ding
  • Chuang Wang

Abstract

Rapid advances in new generation information technologies, such as big data analytics, internet of things (IoT), edge computing and artificial intelligence, have nowadays driven traditional manufacturing all the way to intelligent manufacturing. Intelligent manufacturing is characterised by autonomy and self-optimisation, which proposes new demands such as learning and cognitive capacities for manufacturing cell, known as the minimum implementation unit for intelligent manufacturing. Consequently, this paper proposes a general framework for knowledge-driven digital twin manufacturing cell (KDTMC) towards intelligent manufacturing, which could support autonomous manufacturing by an intelligent perceiving, simulating, understanding, predicting, optimising and controlling strategy. Three key enabling technologies including digital twin model, dynamic knowledge bases and knowledge-based intelligent skills for supporting the above strategy are analysed, which equip KDTMC with the capacities of self-thinking, self-decision-making, self-execution and self-improving. The implementing methods of KDTMC are also introduced by a thus constructed test bed. Three application examples about intelligent process planning, intelligent production scheduling and production process analysis and dynamic regulation demonstrate the feasibility of KDTMC, which provides a practical insight into the intelligent manufacturing paradigm.

Suggested Citation

  • Guanghui Zhou & Chao Zhang & Zhi Li & Kai Ding & Chuang Wang, 2020. "Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(4), pages 1034-1051, February.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:4:p:1034-1051
    DOI: 10.1080/00207543.2019.1607978
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1607978
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1607978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bag, Surajit & Dhamija, Pavitra & Singh, Rajesh Kumar & Rahman, Muhammad Sabbir & Sreedharan, V. Raja, 2023. "Big data analytics and artificial intelligence technologies based collaborative platform empowering absorptive capacity in health care supply chain: An empirical study," Journal of Business Research, Elsevier, vol. 154(C).
    2. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    3. Arsenyan, Jbid & Mirowska, Agata & Piepenbrink, Anke, 2023. "Close encounters with the virtual kind: Defining a human-virtual agent coexistence framework," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    4. Hazrathosseini, Arman & Moradi Afrapoli, Ali, 2023. "The advent of digital twins in surface mining: Its time has finally arrived," Resources Policy, Elsevier, vol. 80(C).
    5. Saporiti, Nicolò & Cannas, Violetta Giada & Pozzi, Rossella & Rossi, Tommaso, 2023. "Challenges and countermeasures for digital twin implementation in manufacturing plants: A Delphi study," International Journal of Production Economics, Elsevier, vol. 261(C).
    6. Neto, Anis Assad & Ribeiro da Silva, Elias & Deschamps, Fernando & do Nascimento Junior, Laercio Alves & Pinheiro de Lima, Edson, 2023. "Modeling production disorder: Procedures for digital twins of flexibility-driven manufacturing systems," International Journal of Production Economics, Elsevier, vol. 260(C).
    7. Li, Fangye & Liu, Weiwei & Bi, Kexin, 2021. "Exploring and visualizing spatial-temporal evolution of patent collaboration networks: A case of China's intelligent manufacturing equipment industry," Technology in Society, Elsevier, vol. 64(C).
    8. Bag, Surajit & Pretorius, Jan Ham Christiaan & Gupta, Shivam & Dwivedi, Yogesh K., 2021. "Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    9. Kamble, Sachin S & Gunasekaran, Angappa & Parekh, Harsh & Mani, Venkatesh & Belhadi, Amine & Sharma, Rohit, 2022. "Digital twin for sustainable manufacturing supply chains: Current trends, future perspectives, and an implementation framework," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    10. Gaurav Garg & Vladimir Kuts & Gholamreza Anbarjafari, 2021. "Digital Twin for FANUC Robots: Industrial Robot Programming and Simulation Using Virtual Reality," Sustainability, MDPI, vol. 13(18), pages 1-22, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:4:p:1034-1051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.