IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i17p1858-1865.html
   My bibliography  Save this article

Principal points and elliptical distributions from the multivariate setting to the functional case

Author

Listed:
  • Bali, Juan Lucas
  • Boente, Graciela

Abstract

In this paper, we present an extension of the properties of principal points, self-consistent points and elliptical distribution results obtained in the euclidean setting to the functional elliptical distribution case, i.e., when dealing with random elements over a separable Hilbert space .

Suggested Citation

  • Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:17:p:1858-1865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(09)00192-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarpey, Thaddeus, 1994. "Two principal points of symmetric, strongly unimodal distributions," Statistics & Probability Letters, Elsevier, vol. 20(4), pages 253-257, July.
    2. Tarpey T. & Petkova E. & Ogden R.T., 2003. "Profiling Placebo Responders by Self-Consistent Partitioning of Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 850-858, January.
    3. Thaddeus Tarpey, 1997. "Estimating principal points of univariate distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(5), pages 499-512.
    4. Tarpey, T., 1995. "Principal Points and Self-Consistent Points of Symmetrical Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 39-51, April.
    5. Bernard D. Flury, 1993. "Estimation of Principal Points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(1), pages 139-151, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
    2. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    3. Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
    4. Kalogridis, Ioannis & Van Aelst, Stefan, 2019. "Robust functional regression based on principal components," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 393-415.
    5. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    6. Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.
    7. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    8. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    9. Park, Yeonjoo & Kim, Hyunsung & Lim, Yaeji, 2023. "Functional principal component analysis for partially observed elliptical process," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    10. Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
    11. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    12. Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
    13. Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
    14. Boente, Graciela & Salibián Barrera, Matías & Tyler, David E., 2014. "A characterization of elliptical distributions and some optimality properties of principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 254-264.
    15. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.
    2. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    3. Santanu Chakraborty & Mrinal Kanti Roychowdhury & Josef Sifuentes, 2021. "High Precision Numerical Computation of Principal Points for Univariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 558-584, November.
    4. Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
    5. Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
    6. Yamamoto, Wataru & Shinozaki, Nobuo, 2000. "On uniqueness of two principal points for univariate location mixtures," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 33-42, January.
    7. Yang, Jun & He, Ping & Fang, Kai-Tai, 2022. "Three kinds of discrete approximations of statistical multivariate distributions and their applications," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Thaddeus Tarpey, 2007. "A parametric k-means algorithm," Computational Statistics, Springer, vol. 22(1), pages 71-89, April.
    9. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    10. Yu, Feng, 2022. "Uniqueness of principal points with respect to p-order distance for a class of univariate continuous distribution," Statistics & Probability Letters, Elsevier, vol. 183(C).
    11. Jiang, Jia-Jian & He, Ping & Fang, Kai-Tai, 2015. "An interesting property of the arcsine distribution and its applications," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 88-95.
    12. Thaddeus Tarpey, 1997. "Estimating principal points of univariate distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(5), pages 499-512.
    13. Yinan Li & Kai-Tai Fang & Ping He & Heng Peng, 2022. "Representative Points from a Mixture of Two Normal Distributions," Mathematics, MDPI, vol. 10(21), pages 1-28, October.
    14. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    15. Tarpey, Thaddeus & Loperfido, Nicola, 2015. "Self-consistency and a generalized principal subspace theorem," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 27-37.
    16. Pötzelberger Klaus & Strasser Helmut, 2001. "Clustering And Quantization By Msp-Partitions," Statistics & Risk Modeling, De Gruyter, vol. 19(4), pages 331-372, April.
    17. Petkova Eva & Tarpey Thaddeus & Govindarajulu Usha, 2009. "Predicting Potential Placebo Effect in Drug Treated Subjects," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-27, July.
    18. Long-Hao Xu & Yinan Li & Kai-Tai Fang, 2024. "The resampling method via representative points," Statistical Papers, Springer, vol. 65(6), pages 3621-3649, August.
    19. Li, Luning & Flury, Bernard, 1995. "Uniqueness of principal points for univariate distributions," Statistics & Probability Letters, Elsevier, vol. 25(4), pages 323-327, December.
    20. Kai-Tai Fang & Jianxin Pan, 2023. "A Review of Representative Points of Statistical Distributions and Their Applications," Mathematics, MDPI, vol. 11(13), pages 1-25, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:17:p:1858-1865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.