IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v61y2020i4d10.1007_s00362-018-0995-z.html
   My bibliography  Save this article

Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families

Author

Listed:
  • Shun Matsuura

    (Keio University)

  • Thaddeus Tarpey

    (Wright State University)

Abstract

A set of k points that optimally summarize a distribution is called a set of k-principal points, which is a generalization of the mean from one point to multiple points and is useful especially for multivariate distributions. This paper discusses the estimation of principal points of multivariate distributions. First, an optimal estimator of principal points is derived for multivariate distributions of location-scale families. In particular, an optimal principal points estimator of a multivariate normal distribution is shown to be obtained by using principal points of a scaled multivariate t-distribution. We also study the case of multivariate location-scale-rotation families. Numerical examples are presented to compare the optimal estimators with maximum likelihood estimators.

Suggested Citation

  • Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
  • Handle: RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-018-0995-z
    DOI: 10.1007/s00362-018-0995-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-0995-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-0995-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarpey, Thaddeus & Petkova, Eva & Lu, Yimeng & Govindarajulu, Usha, 2010. "Optimal Partitioning for Linear Mixed Effects Models: Applications to Identifying Placebo Responders," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 968-977.
    2. Li, Luning & Flury, Bernard, 1995. "Uniqueness of principal points for univariate distributions," Statistics & Probability Letters, Elsevier, vol. 25(4), pages 323-327, December.
    3. Tarpey T. & Petkova E. & Ogden R.T., 2003. "Profiling Placebo Responders by Self-Consistent Partitioning of Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 850-858, January.
    4. Tarpey, Thaddeus & Loperfido, Nicola, 2015. "Self-consistency and a generalized principal subspace theorem," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 27-37.
    5. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    6. Thaddeus Tarpey, 1997. "Estimating principal points of univariate distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(5), pages 499-512.
    7. Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
    8. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    9. Bernard D. Flury, 1993. "Estimation of Principal Points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(1), pages 139-151, March.
    10. Thaddeus Tarpey, 2007. "A parametric k-means algorithm," Computational Statistics, Springer, vol. 22(1), pages 71-89, April.
    11. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long-Hao Xu & Yinan Li & Kai-Tai Fang, 2024. "The resampling method via representative points," Statistical Papers, Springer, vol. 65(6), pages 3621-3649, August.
    2. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.
    2. Santanu Chakraborty & Mrinal Kanti Roychowdhury & Josef Sifuentes, 2021. "High Precision Numerical Computation of Principal Points for Univariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 558-584, November.
    3. Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
    4. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    5. Yang, Jun & He, Ping & Fang, Kai-Tai, 2022. "Three kinds of discrete approximations of statistical multivariate distributions and their applications," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    6. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    7. Tarpey, Thaddeus & Loperfido, Nicola, 2015. "Self-consistency and a generalized principal subspace theorem," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 27-37.
    8. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    9. Thaddeus Tarpey, 2007. "A parametric k-means algorithm," Computational Statistics, Springer, vol. 22(1), pages 71-89, April.
    10. Long-Hao Xu & Yinan Li & Kai-Tai Fang, 2024. "The resampling method via representative points," Statistical Papers, Springer, vol. 65(6), pages 3621-3649, August.
    11. Yu, Feng, 2022. "Uniqueness of principal points with respect to p-order distance for a class of univariate continuous distribution," Statistics & Probability Letters, Elsevier, vol. 183(C).
    12. Jiang, Jia-Jian & He, Ping & Fang, Kai-Tai, 2015. "An interesting property of the arcsine distribution and its applications," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 88-95.
    13. Shun Matsuura, 2014. "Effectiveness of a random compound noise strategy for robust parameter design," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1903-1918, September.
    14. Yinan Li & Kai-Tai Fang & Ping He & Heng Peng, 2022. "Representative Points from a Mixture of Two Normal Distributions," Mathematics, MDPI, vol. 10(21), pages 1-28, October.
    15. Yamamoto, Wataru & Shinozaki, Nobuo, 2000. "On uniqueness of two principal points for univariate location mixtures," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 33-42, January.
    16. Petkova Eva & Tarpey Thaddeus & Govindarajulu Usha, 2009. "Predicting Potential Placebo Effect in Drug Treated Subjects," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-27, July.
    17. Loperfido, Nicola, 2014. "A note on the fourth cumulant of a finite mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 386-394.
    18. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    19. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    20. Shushi, Tomer, 2019. "The Minkowski length of a spherical random vector," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 104-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:61:y:2020:i:4:d:10.1007_s00362-018-0995-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.