IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v105y2015icp88-95.html
   My bibliography  Save this article

An interesting property of the arcsine distribution and its applications

Author

Listed:
  • Jiang, Jia-Jian
  • He, Ping
  • Fang, Kai-Tai

Abstract

Representative points obtained by number-theoretic method (RPs-NTM) are used to construct a discrete approximation to the arcsine distribution. An interesting property of the discrete approximation is presented. In addition, another type of representative points of minimizing mean squared error (RPs-MSE) is also considered as an approximation. The performance of the two discrete approximations is evaluated.

Suggested Citation

  • Jiang, Jia-Jian & He, Ping & Fang, Kai-Tai, 2015. "An interesting property of the arcsine distribution and its applications," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 88-95.
  • Handle: RePEc:eee:stapro:v:105:y:2015:i:c:p:88-95
    DOI: 10.1016/j.spl.2015.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215001820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xin Guo & Robert A. Jarrow & Adrien de Larrard, 2014. "The economic default time and the arcsine law," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 1-18.
    2. Tarpey, Thaddeus, 1994. "Two principal points of symmetric, strongly unimodal distributions," Statistics & Probability Letters, Elsevier, vol. 20(4), pages 253-257, July.
    3. Li, Luning & Flury, Bernard, 1995. "Uniqueness of principal points for univariate distributions," Statistics & Probability Letters, Elsevier, vol. 25(4), pages 323-327, December.
    4. James E. Smith, 1993. "Moment Methods for Decision Analysis," Management Science, INFORMS, vol. 39(3), pages 340-358, March.
    5. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.
    6. Bernard D. Flury, 1993. "Estimation of Principal Points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(1), pages 139-151, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Ke & Sirao Wang & Min Zhou & Huajun Ye, 2023. "New Approaches on Parameter Estimation of the Gamma Distribution," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    2. Kai-Tai Fang & Jianxin Pan, 2023. "A Review of Representative Points of Statistical Distributions and Their Applications," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    3. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    2. Yamamoto, Wataru & Shinozaki, Nobuo, 2000. "On uniqueness of two principal points for univariate location mixtures," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 33-42, January.
    3. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.
    4. Yu, Feng, 2022. "Uniqueness of principal points with respect to p-order distance for a class of univariate continuous distribution," Statistics & Probability Letters, Elsevier, vol. 183(C).
    5. Thaddeus Tarpey, 2007. "A parametric k-means algorithm," Computational Statistics, Springer, vol. 22(1), pages 71-89, April.
    6. Yinan Li & Kai-Tai Fang & Ping He & Heng Peng, 2022. "Representative Points from a Mixture of Two Normal Distributions," Mathematics, MDPI, vol. 10(21), pages 1-28, October.
    7. Woodruff, Joshua & Dimitrov, Nedialko B., 2018. "Optimal discretization for decision analysis," Operations Research Perspectives, Elsevier, vol. 5(C), pages 288-305.
    8. Konstantin Pavlikov & Stan Uryasev, 2018. "CVaR distance between univariate probability distributions and approximation problems," Annals of Operations Research, Springer, vol. 262(1), pages 67-88, March.
    9. Santanu Chakraborty & Mrinal Kanti Roychowdhury & Josef Sifuentes, 2021. "High Precision Numerical Computation of Principal Points for Univariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 558-584, November.
    10. Thaddeus Tarpey, 1997. "Estimating principal points of univariate distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(5), pages 499-512.
    11. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    12. Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
    13. Jing Ai & Patrick L. Brockett & Tianyang Wang, 2017. "Optimal Enterprise Risk Management and Decision Making With Shared and Dependent Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(4), pages 1127-1169, December.
    14. Li, Luning & Flury, Bernard, 1995. "Uniqueness of principal points for univariate distributions," Statistics & Probability Letters, Elsevier, vol. 25(4), pages 323-327, December.
    15. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    16. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    17. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    18. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    19. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    20. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:105:y:2015:i:c:p:88-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.