IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i6d10.1007_s00362-024-01536-2.html
   My bibliography  Save this article

The resampling method via representative points

Author

Listed:
  • Long-Hao Xu

    (Beijing Normal University – Hong Kong Baptist University United International College
    University Medical Center Göttingen)

  • Yinan Li

    (Beijing Normal University – Hong Kong Baptist University United International College
    Hong Kong Baptist University)

  • Kai-Tai Fang

    (Beijing Normal University – Hong Kong Baptist University United International College
    The Chinese Academy of Sciences)

Abstract

The bootstrap method relies on resampling from the empirical distribution to provide inferences about the population with a distribution F. The empirical distribution serves as an approximation to the population. It is possible, however, to resample from another approximating distribution of F to conduct simulation-based inferences. In this paper, we utilize representative points to form an alternative approximating distribution of F for resampling. The representative points in terms of minimum mean squared error from F have been widely applied to numerical integration, simulation, and the problems of grouping, quantization, and classification. The method of resampling via representative points can be used to estimate the sampling distribution of a statistic of interest. A basic theory for the proposed method is established. We prove the convergence of higher-order moments of the new approximating distribution of F, and establish the consistency of sampling distribution approximation in the cases of the sample mean and sample variance under the Kolmogorov metric and Mallows–Wasserstein metric. Based on some numerical studies, it has been shown that the proposed resampling method improves the nonparametric bootstrap in terms of confidence intervals for mean and variance.

Suggested Citation

  • Long-Hao Xu & Yinan Li & Kai-Tai Fang, 2024. "The resampling method via representative points," Statistical Papers, Springer, vol. 65(6), pages 3621-3649, August.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-024-01536-2
    DOI: 10.1007/s00362-024-01536-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01536-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01536-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarpey, Thaddeus & Petkova, Eva & Lu, Yimeng & Govindarajulu, Usha, 2010. "Optimal Partitioning for Linear Mixed Effects Models: Applications to Identifying Placebo Responders," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 968-977.
    2. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, January.
    3. Thaddeus Tarpey, 1997. "Estimating principal points of univariate distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(5), pages 499-512.
    4. Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
    5. Santanu Chakraborty & Mrinal Kanti Roychowdhury & Josef Sifuentes, 2021. "High Precision Numerical Computation of Principal Points for Univariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 558-584, November.
    6. Bernard D. Flury, 1993. "Estimation of Principal Points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(1), pages 139-151, March.
    7. Yang, Jun & He, Ping & Fang, Kai-Tai, 2022. "Three kinds of discrete approximations of statistical multivariate distributions and their applications," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
    2. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    3. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.
    4. Santanu Chakraborty & Mrinal Kanti Roychowdhury & Josef Sifuentes, 2021. "High Precision Numerical Computation of Principal Points for Univariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 558-584, November.
    5. Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
    6. Yinan Li & Kai-Tai Fang & Ping He & Heng Peng, 2022. "Representative Points from a Mixture of Two Normal Distributions," Mathematics, MDPI, vol. 10(21), pages 1-28, October.
    7. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    8. Sirao Wang & Jiajuan Liang & Min Zhou & Huajun Ye, 2022. "Testing Multivariate Normality Based on F -Representative Points," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    9. Davidov, Ori, 2005. "When is the mean self-consistent?," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 295-310, October.
    10. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    11. Thaddeus Tarpey, 2007. "A parametric k-means algorithm," Computational Statistics, Springer, vol. 22(1), pages 71-89, April.
    12. Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
    13. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    14. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    15. Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.
    16. Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
    17. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    18. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2018. "Asymptotic results under multiway clustering," Papers 1807.07925, arXiv.org, revised Aug 2018.
    19. Dominic Edelmann & Tobias Terzer & Donald Richards, 2021. "A Basic Treatment of the Distance Covariance," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 12-25, May.
    20. A Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Osman Shami & Alexander Teytelboym, 2024. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," Journal of the European Economic Association, European Economic Association, vol. 22(2), pages 781-836.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-024-01536-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.