IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v184y2023ics0167947323000567.html
   My bibliography  Save this article

Functional principal component analysis for partially observed elliptical process

Author

Listed:
  • Park, Yeonjoo
  • Kim, Hyunsung
  • Lim, Yaeji

Abstract

The robust principal component estimators for partially observed functional data with heavy-tail behaviors are presented, where sample trajectories are collected over individual-specific subintervals. The method considers partially sampled trajectories as the elliptical process filtered by the missing indicator process and implements robust functional principal component analysis under this framework. The proposed method is computationally efficient and straightforward by estimating the robust correlation function through pairwise covariance computation combined with M-estimation. The asymptotic consistency of the estimators is established under general conditions. The simulation studies demonstrate the superior performance of the method in the approximation of the subspace of data and reconstruction of full trajectories. The proposed method is then applied to hourly monitored air pollutant data containing anomaly trajectories with random missing segments.

Suggested Citation

  • Park, Yeonjoo & Kim, Hyunsung & Lim, Yaeji, 2023. "Functional principal component analysis for partially observed elliptical process," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:csdana:v:184:y:2023:i:c:s0167947323000567
    DOI: 10.1016/j.csda.2023.107745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323000567
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yehua & Wang, Naisyin & Carroll, Raymond J., 2010. "Generalized Functional Linear Models With Semiparametric Single-Index Interactions," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 621-633.
    2. Ana-Maria Staicu & Ciprian M. Crainiceanu & Daniel S. Reich & David Ruppert, 2012. "Modeling Functional Data with Spatially Heterogeneous Shape Characteristics," Biometrics, The International Biometric Society, vol. 68(2), pages 331-343, June.
    3. Daniel Gervini, 2008. "Robust functional estimation using the median and spherical principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 587-600.
    4. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    5. Hubert, M. & Vandervieren, E., 2008. "An adjusted boxplot for skewed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5186-5201, August.
    6. Aurore Delaigle & Peter Hall & Wei Huang & Alois Kneip, 2021. "Estimating the Covariance of Fragmented and Other Related Types of Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1383-1401, July.
    7. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    8. Boente, Graciela & Salibián Barrera, Matías & Tyler, David E., 2014. "A characterization of elliptical distributions and some optimality properties of principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 254-264.
    9. Li, Yingxing & Härdle, Wolfgang Karl & Huang, Chen, 2017. "Smooth principal component analysis for high dimensional data," SFB 649 Discussion Papers 2017-024, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.
    11. David Kraus, 2015. "Components and completion of partially observed functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 777-801, September.
    12. Genton, Marc G. & Ma, Yanyuan, 1999. "Robustness properties of dispersion estimators," Statistics & Probability Letters, Elsevier, vol. 44(4), pages 343-350, October.
    13. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    14. Zhenhua Lin & Jane-Ling Wang, 2022. "Mean and Covariance Estimation for Functional Snippets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 348-360, January.
    15. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    16. Ricardo A. Maronna, 2021. "Robust functional principal components for irregularly spaced longitudinal data," Statistical Papers, Springer, vol. 62(4), pages 1563-1582, August.
    17. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    18. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.
    3. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    4. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
    5. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Haolun Shi & Jiguo Cao, 2022. "Robust Functional Principal Component Analysis Based on a New Regression Framework," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 523-543, September.
    7. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "Robust simultaneous inference for the mean function of functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 785-803, September.
    8. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    9. Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
    10. Kalogridis, Ioannis & Van Aelst, Stefan, 2019. "Robust functional regression based on principal components," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 393-415.
    11. Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
    12. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    13. Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    14. Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
    15. Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
    16. Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
    17. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    18. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    19. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    20. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:184:y:2023:i:c:s0167947323000567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.