IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v55y2014i3p853-870.html
   My bibliography  Save this article

Principal points for an allometric extension model

Author

Listed:
  • Shun Matsuura
  • Hiroshi Kurata

Abstract

A set of $$n$$ n -principal points of a $$p$$ p -dimensional distribution is an optimal $$n$$ n -point-approximation of the distribution in terms of a squared error loss. It is in general difficult to derive an explicit expression of principal points. Hence, we may have to search the whole space $$R^p$$ R p for $$n$$ n -principal points. Many efforts have been devoted to establish results that specify a linear subspace in which principal points lie. However, the previous studies focused on elliptically symmetric distributions and location mixtures of spherically symmetric distributions, which may not be suitable to many practical situations. In this paper, we deal with a mixture of elliptically symmetric distributions that form an allometric extension model, which has been widely used in the context of principal component analysis. We give conditions under which principal points lie in the linear subspace spanned by the first several principal components. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
  • Handle: RePEc:spr:stpapr:v:55:y:2014:i:3:p:853-870
    DOI: 10.1007/s00362-013-0532-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-013-0532-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-013-0532-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tarpey, Thaddeus & Petkova, Eva & Lu, Yimeng & Govindarajulu, Usha, 2010. "Optimal Partitioning for Linear Mixed Effects Models: Applications to Identifying Placebo Responders," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 968-977.
    2. Kurata, Hiroshi & Hoshino, Takahiro & Fujikoshi, Yasunori, 2008. "Allometric extension model for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1985-1998, October.
    3. Shuangzhe Liu & Chris Heyde & Wing-Keung Wong, 2011. "Moment matrices in conditional heteroskedastic models under elliptical distributions with applications in AR-ARCH models," Statistical Papers, Springer, vol. 52(3), pages 621-632, August.
    4. Tarpey T. & Petkova E. & Ogden R.T., 2003. "Profiling Placebo Responders by Self-Consistent Partitioning of Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 850-858, January.
    5. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    6. Shahjahan Khan, 2009. "Optimal tolerance regions for future regression vector and residual sum of squares of multiple regression model with multivariate spherically contoured errors," Statistical Papers, Springer, vol. 50(3), pages 511-525, June.
    7. Hiroshi Kurata, 2010. "A theorem on the covariance matrix of a generalized least squares estimator under an elliptically symmetric error," Statistical Papers, Springer, vol. 51(2), pages 389-395, June.
    8. Anwar Joarder, 2008. "Some useful integrals and their applications in correlation analysis," Statistical Papers, Springer, vol. 49(2), pages 211-224, April.
    9. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    10. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    11. Tarpey, T., 1995. "Principal Points and Self-Consistent Points of Symmetrical Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 39-51, April.
    12. Bernard D. Flury, 1993. "Estimation of Principal Points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(1), pages 139-151, March.
    13. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.
    14. Su, Yingcai, 1997. "On the Asymptotics of Quantizers in Two Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 67-85, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
    2. Santanu Chakraborty & Mrinal Kanti Roychowdhury & Josef Sifuentes, 2021. "High Precision Numerical Computation of Principal Points for Univariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 558-584, November.
    3. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    4. Yang, Jun & He, Ping & Fang, Kai-Tai, 2022. "Three kinds of discrete approximations of statistical multivariate distributions and their applications," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
    2. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.
    3. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    4. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    5. Tarpey, Thaddeus & Loperfido, Nicola, 2015. "Self-consistency and a generalized principal subspace theorem," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 27-37.
    6. Yang, Jun & He, Ping & Fang, Kai-Tai, 2022. "Three kinds of discrete approximations of statistical multivariate distributions and their applications," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Santanu Chakraborty & Mrinal Kanti Roychowdhury & Josef Sifuentes, 2021. "High Precision Numerical Computation of Principal Points for Univariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 558-584, November.
    8. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    9. Kurata, Hiroshi & Hoshino, Takahiro & Fujikoshi, Yasunori, 2008. "Allometric extension model for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1985-1998, October.
    10. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    11. Yamamoto, Wataru & Shinozaki, Nobuo, 2000. "On uniqueness of two principal points for univariate location mixtures," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 33-42, January.
    12. Pötzelberger Klaus & Strasser Helmut, 2001. "Clustering And Quantization By Msp-Partitions," Statistics & Risk Modeling, De Gruyter, vol. 19(4), pages 331-372, April.
    13. Petkova Eva & Tarpey Thaddeus & Govindarajulu Usha, 2009. "Predicting Potential Placebo Effect in Drug Treated Subjects," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-27, July.
    14. Long-Hao Xu & Yinan Li & Kai-Tai Fang, 2024. "The resampling method via representative points," Statistical Papers, Springer, vol. 65(6), pages 3621-3649, August.
    15. Loperfido, Nicola, 2014. "A note on the fourth cumulant of a finite mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 386-394.
    16. Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
    17. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    18. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
    19. Kai-Tai Fang & Jianxin Pan, 2023. "A Review of Representative Points of Statistical Distributions and Their Applications," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    20. Yu, Feng, 2022. "Uniqueness of principal points with respect to p-order distance for a class of univariate continuous distribution," Statistics & Probability Letters, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:55:y:2014:i:3:p:853-870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.