IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v77y2007i10p1004-1013.html
   My bibliography  Save this article

Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms

Author

Listed:
  • Meintanis, Simos
  • Swanepoel, Jan

Abstract

Several test statistics have been proposed recently which employ a weighted distance that depends on an empirical transform, as well as on estimated parameters. The empirical characteristic function is a typical example, but alternative empirical transforms have also been employed, such as the empirical Laplace transform when dealing with non-negative random variables or the empirical probability generating function corresponding to discrete observations. We propose a general formulation that covers most of the transform-based test statistics which have appeared in the literature. Under this formulation, the asymptotic properties of the test statistics, such as the limiting null distribution and the consistency under general alternatives, are derived. Since large-sample critical values are extremely complicated (if not impossible) to compute, two effective bootstrap versions of the test procedures are derived, which can be used to approximate the critical values, for any given sample size, and to calculate the power under contiguous alternatives. The validity of these bootstrap procedures is shown analytically.

Suggested Citation

  • Meintanis, Simos & Swanepoel, Jan, 2007. "Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1004-1013, June.
  • Handle: RePEc:eee:stapro:v:77:y:2007:i:10:p:1004-1013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(07)00040-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nora Gürtler & Norbert Henze, 2000. "Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 267-286, June.
    2. Muneya Matsui & Akimichi Takemura, 2005. "Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 183-199, March.
    3. Ludwig Baringhaus & Norbert Henze, 1991. "A class of consistent tests for exponentiality based on the empirical Laplace transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(3), pages 551-564, September.
    4. Simos Meintanis & George Iliopoulos, 2003. "Tests of fit for the Rayleigh distribution based on the empirical Laplace transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 137-151, March.
    5. Norbert Henze & Bernhard Klar, 2002. "Goodness-of-Fit Tests for the Inverse Gaussian Distribution Based on the Empirical Laplace Transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 425-444, June.
    6. Baringhaus, L. & Henze, N., 1992. "A goodness of fit test for the Poisson distribution based on the empirical generating function," Statistics & Probability Letters, Elsevier, vol. 13(4), pages 269-274, March.
    7. Rémillard Bruno & Theodorescu Radu, 2000. "Inference Based On The Empirical Probability Generating Function For Mixtures Of Poisson Distributions," Statistics & Risk Modeling, De Gruyter, vol. 18(4), pages 349-366, April.
    8. T.W. Epps, 2005. "Tests for location-scale families based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 62(1), pages 99-114, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Baringhaus & D. Kolbe, 2015. "Two-sample tests based on empirical Hankel transforms," Statistical Papers, Springer, vol. 56(3), pages 597-617, August.
    2. Simos G. Meintanis & Zdeněk Hlávka, 2010. "Goodness‐of‐Fit Tests for Bivariate and Multivariate Skew‐Normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 701-714, December.
    3. Simos Meintanis & Dimitris Karlis, 2014. "Validation tests for the innovation distribution in INAR time series models," Computational Statistics, Springer, vol. 29(5), pages 1221-1241, October.
    4. Baringhaus, Ludwig & Gaigall, Daniel, 2023. "A goodness-of-fit test for the compound Poisson exponential model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    5. F. Novoa-Muñoz & M. Jiménez-Gamero, 2014. "Testing for the bivariate Poisson distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 771-793, August.
    6. M. D. Jiménez-Gamero & A. Batsidis, 2017. "Minimum distance estimators for count data based on the probability generating function with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 503-545, July.
    7. Sangyeol Lee & Simos G. Meintanis & Minyoung Jo, 2019. "Inferential procedures based on the integrated empirical characteristic function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 357-386, September.
    8. Baringhaus, Ludwig & Taherizadeh, Fatemeh, 2010. "Empirical Hankel transforms and its applications to goodness-of-fit tests," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1445-1457, July.
    9. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2015. "An approximation to the null distribution of a class of Cramér–von Mises statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 258-272.
    10. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    11. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    12. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    13. Simos Meintanis & Bojana Milošević & Marko Obradović, 2023. "Bahadur efficiency for certain goodness-of-fit tests based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 723-751, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    2. Bojana Milošević & Marko Obradović, 2016. "New class of exponentiality tests based on U-empirical Laplace transform," Statistical Papers, Springer, vol. 57(4), pages 977-990, December.
    3. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    4. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    5. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2015. "An approximation to the null distribution of a class of Cramér–von Mises statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 258-272.
    6. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    7. E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
    8. Gerrit Lodewicus Grobler & Elzanie Bothma & James Samuel Allison, 2022. "Testing for the Rayleigh Distribution: A New Test with Comparisons to Tests for Exponentiality Based on Transformed Data," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    9. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.
    10. Yuichi Akaoka & Kazuki Okamura & Yoshiki Otobe, 2022. "Bahadur efficiency of the maximum likelihood estimator and one-step estimator for quasi-arithmetic means of the Cauchy distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 895-923, October.
    11. Alba Fernández, M.V. & Jiménez Gamero, M.D. & Castillo Gutiérrez, S., 2014. "Approximating a class of goodness-of-fit test statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 102(C), pages 24-38.
    12. Žikica Lukić & Bojana Milošević, 2024. "A novel two-sample test within the space of symmetric positive definite matrix distributions and its application in finance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 797-820, October.
    13. Meintanis, Simos G., 2008. "A new approach of goodness-of-fit testing for exponentiated laws applied to the generalized Rayleigh distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2496-2503, January.
    14. Muneya Matsui & Akimichi Takemura, 2005. "Goodness-of-Fit Tests for Symmetric Stable Distributions - Empirical Characteristic Function Approach," CIRJE F-Series CIRJE-F-384, CIRJE, Faculty of Economics, University of Tokyo.
    15. Klar, Bernhard & Meintanis, Simos G., 2005. "Tests for normal mixtures based on the empirical characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 227-242, April.
    16. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    17. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    18. José A. Villaseñor & Elizabeth González-Estrada & Adrián Ochoa, 2019. "On Testing the Inverse Gaussian Distribution Hypothesis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 60-74, June.
    19. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    20. Klebanov, Lev B. & Slámová, Lenka, 2013. "Integer valued stable random variables," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1513-1519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:77:y:2007:i:10:p:1004-1013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.