IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v80y2017i5d10.1007_s00184-017-0614-3.html
   My bibliography  Save this article

Minimum distance estimators for count data based on the probability generating function with applications

Author

Listed:
  • M. D. Jiménez-Gamero

    (Universidad de Sevilla)

  • A. Batsidis

    (University of Ioannina)

Abstract

This paper studies properties of parameter estimators obtained by minimizing a distance between the empirical probability generating function and the probability generating function of a model for count data. Specifically, it is shown that, under certain not restrictive conditions, the resulting estimators are consistent and, suitably normalized, asymptotically normal. These properties hold even if the model is misspecified. Three applications of the obtained results are considered. First, we revisit the goodness-of-fit problem for count data and propose a weighted bootstrap estimator of the null distribution of test statistics based on the above cited distance. Second, we give a probability generating function version of the model selection test problem for separate, overlapping and nested families of distributions. Finally, we provide an application to the problem of testing for separate families of distributions. All applications are illustrated with numerical examples.

Suggested Citation

  • M. D. Jiménez-Gamero & A. Batsidis, 2017. "Minimum distance estimators for count data based on the probability generating function with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 503-545, July.
  • Handle: RePEc:spr:metrik:v:80:y:2017:i:5:d:10.1007_s00184-017-0614-3
    DOI: 10.1007/s00184-017-0614-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-017-0614-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-017-0614-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakamura, Miguel & Perez-Abreu, Victor, 1993. "Empirical probability generating function : An overview," Insurance: Mathematics and Economics, Elsevier, vol. 12(3), pages 287-295, June.
    2. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    3. Meintanis, Simos & Swanepoel, Jan, 2007. "Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1004-1013, June.
    4. Burke, Murray D., 2000. "Multivariate tests-of-fit and uniform confidence bands using a weighted bootstrap," Statistics & Probability Letters, Elsevier, vol. 46(1), pages 13-20, January.
    5. White, Halbert, 1982. "Regularity conditions for cox's test of non-nested hypotheses," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 301-318, August.
    6. M. Jiménez-Gamero & A. Batsidis & M. Alba-Fernández, 2016. "Fourier methods for model selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 105-133, February.
    7. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    8. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    9. Dehling, H. & Mikosch, T., 1994. "Random Quadratic Forms and the Bootstrap for U-Statistics," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 392-413, November.
    10. Baringhaus, L. & Henze, N., 1992. "A goodness of fit test for the Poisson distribution based on the empirical generating function," Statistics & Probability Letters, Elsevier, vol. 13(4), pages 269-274, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Gkelsinis & Alex Karagrigoriou, 2020. "Theoretical Aspects on Measures of Directed Information with Simulations," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    2. Apostolos Batsidis & María Dolores Jiménez-Gamero & Artur J. Lemonte, 2020. "On goodness-of-fit tests for the Bell distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 297-319, April.
    3. Jiménez-Gamero, M.D. & Alba-Fernández, M.V., 2021. "A test for the geometric distribution based on linear regression of order statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 103-123.
    4. Jiménez-Gamero, M.D. & Alba-Fernández, M.V., 2019. "Testing for the Poisson–Tweedie distribution," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 164(C), pages 146-162.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    2. Jiménez-Gamero, M.D. & Alba-Fernández, M.V., 2021. "A test for the geometric distribution based on linear regression of order statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 186(C), pages 103-123.
    3. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    4. G. I. Rivas-Martínez & M. D. Jiménez-Gamero & J. L. Moreno-Rebollo, 2019. "A two-sample test for the error distribution in nonparametric regression based on the characteristic function," Statistical Papers, Springer, vol. 60(4), pages 1369-1395, August.
    5. M. Jiménez-Gamero & A. Batsidis & M. Alba-Fernández, 2016. "Fourier methods for model selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 105-133, February.
    6. Corradi, Valentina & Swanson, Norman R., 2004. "A test for the distributional comparison of simulated and historical data," Economics Letters, Elsevier, vol. 85(2), pages 185-193, November.
    7. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    8. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    9. Wang, Qingbin & Halbrendt, Catherine & Johnson, Stanley R., 1996. "A non-nested test of the AIDS vs. the translog demand system," Economics Letters, Elsevier, vol. 51(2), pages 139-143, May.
    10. J. M. C. Santos Silva, 2001. "A score test for non-nested hypotheses with applications to discrete data models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 577-597.
    11. Paarsch, Harry J., 1997. "Deriving an estimate of the optimal reserve price: An application to British Columbian timber sales," Journal of Econometrics, Elsevier, vol. 78(2), pages 333-357, June.
    12. Susanne M. Schennach & Daniel Wilhelm, 2017. "A Simple Parametric Model Selection Test," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1663-1674, October.
    13. Gouriéroux, Christian, 1994. "Modèles économétriques : utilisation et interprétation (les)," CEPREMAP Working Papers (Couverture Orange) 9423, CEPREMAP.
    14. Fontaine, Charles & Frostig, Ron D. & Ombao, Hernando, 2020. "Modeling non-linear spectral domain dependence using copulas with applications to rat local field potentials," Econometrics and Statistics, Elsevier, vol. 15(C), pages 85-103.
    15. Komunjer, Ivana & Ragusa, Giuseppe, 2016. "Existence And Characterization Of Conditional Density Projections," Econometric Theory, Cambridge University Press, vol. 32(4), pages 947-987, August.
    16. Martin Kukuk & Michael Rönnberg, 2013. "Corporate credit default models: a mixed logit approach," Review of Quantitative Finance and Accounting, Springer, vol. 40(3), pages 467-483, April.
    17. Chen, Xiaohong & Hong, Han & Shum, Matthew, 2007. "Nonparametric likelihood ratio model selection tests between parametric likelihood and moment condition models," Journal of Econometrics, Elsevier, vol. 141(1), pages 109-140, November.
    18. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
    19. Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
    20. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:80:y:2017:i:5:d:10.1007_s00184-017-0614-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.