IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v118y2015icp258-272.html
   My bibliography  Save this article

An approximation to the null distribution of a class of Cramér–von Mises statistics

Author

Listed:
  • Jiménez-Gamero, M.D.
  • Alba-Fernández, M.V.
  • Jodrá, P.
  • Barranco-Chamorro, I.

Abstract

A class of goodness-of-fit tests of the Cramér–von Mises type is considered. More specifically, the test statistic of each test is an L2-norm of the difference between the empirical characteristic function associated with a random sample and a parametric estimator of the characteristic function of the population in the null hypothesis. The null distribution of these statistics is unknown and we study a way of estimating it, which is based on approximating the asymptotic null distribution. The asymptotic null distribution is a linear combination of independent chi-squared variates, where the weights are the eigenvalues of certain operator. The calculation of these eigenvalues is, in most cases, a very difficult task. In order to bypass this computation we approximate the test statistic. The asymptotic null distribution of the approximation is again a linear combination of chi-squared variates, but now the weights can be easily approximated. A simulation study is carried out to examine the accuracy of the proposed approximation for finite sample sizes. Although we center our attention on the aforementioned class, the methodology exposed can be applied for approximating the null distribution of other Cramér–von Mises type test statistics.

Suggested Citation

  • Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2015. "An approximation to the null distribution of a class of Cramér–von Mises statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 258-272.
  • Handle: RePEc:eee:matcom:v:118:y:2015:i:c:p:258-272
    DOI: 10.1016/j.matcom.2014.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475414003103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2014.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Alba Fernández & D. Barrera Rosillo & M. Ibáñez Pérez & M. Jiménez Gamero, 2009. "A homogeneity test for bivariate random variables," Computational Statistics, Springer, vol. 24(3), pages 513-531, August.
    2. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    3. Y. Fujikoshi, 1977. "An asymptotic expansion for the distributions of the latent roots of the Wishart matrix with multiple population roots," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 29(1), pages 379-387, December.
    4. Muneya Matsui & Akimichi Takemura, 2008. "Goodness-of-fit tests for symmetric stable distributions—Empirical characteristic function approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 546-566, November.
    5. Muneya Matsui & Akimichi Takemura, 2005. "Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 183-199, March.
    6. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    7. Giacomini, Raffaella & Politis, Dimitris N. & White, Halbert, 2013. "A Warp-Speed Method For Conducting Monte Carlo Experiments Involving Bootstrap Estimators," Econometric Theory, Cambridge University Press, vol. 29(3), pages 567-589, June.
    8. Meintanis, Simos & Swanepoel, Jan, 2007. "Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1004-1013, June.
    9. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    10. Alba Fernández, M.V. & Jiménez Gamero, M.D. & Castillo Gutiérrez, S., 2014. "Approximating a class of goodness-of-fit test statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 102(C), pages 24-38.
    11. T.W. Epps, 2005. "Tests for location-scale families based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 62(1), pages 99-114, September.
    12. Nora Gürtler & Norbert Henze, 2000. "Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 267-286, June.
    13. M. V. Alba & D. Barrera & M. D. Jiménez, 2001. "A homogeneity test based on empirical characteristic functions," Computational Statistics, Springer, vol. 16(2), pages 255-270, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    2. Alba Fernández, M.V. & Jiménez Gamero, M.D. & Castillo Gutiérrez, S., 2014. "Approximating a class of goodness-of-fit test statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 102(C), pages 24-38.
    3. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    4. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.
    5. L. Baringhaus & D. Kolbe, 2015. "Two-sample tests based on empirical Hankel transforms," Statistical Papers, Springer, vol. 56(3), pages 597-617, August.
    6. Sangyeol Lee & Simos G. Meintanis & Minyoung Jo, 2019. "Inferential procedures based on the integrated empirical characteristic function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 357-386, September.
    7. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    8. Meintanis, Simos & Swanepoel, Jan, 2007. "Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1004-1013, June.
    9. M. Dolores Jiménez-Gamero, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 893-897, December.
    10. Jabłońska-Sabuka, Matylda & Teuerle, Marek & Wyłomańska, Agnieszka, 2017. "Bivariate sub-Gaussian model for stock index returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 628-637.
    11. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    12. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    13. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    14. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    15. Meintanis, S. & Ushakov, N. G., 2004. "Binned goodness-of-fit tests based on the empirical characteristic function," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 305-314, September.
    16. E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
    17. Baringhaus, Ludwig & Taherizadeh, Fatemeh, 2010. "Empirical Hankel transforms and its applications to goodness-of-fit tests," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1445-1457, July.
    18. V. Alba Fernández & D. Barrera Rosillo & M. Ibáñez Pérez & M. Jiménez Gamero, 2009. "A homogeneity test for bivariate random variables," Computational Statistics, Springer, vol. 24(3), pages 513-531, August.
    19. Simos Meintanis & Bojana Milošević & Marko Obradović, 2023. "Bahadur efficiency for certain goodness-of-fit tests based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 723-751, October.
    20. Leucht, Anne & Neumann, Michael H., 2009. "Consistency of general bootstrap methods for degenerate U-type and V-type statistics," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1622-1633, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:118:y:2015:i:c:p:258-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.