IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v81y2019i1d10.1007_s13571-017-0148-8.html
   My bibliography  Save this article

On Testing the Inverse Gaussian Distribution Hypothesis

Author

Listed:
  • José A. Villaseñor

    (Colegio de Postgraduados)

  • Elizabeth González-Estrada

    (Colegio de Postgraduados)

  • Adrián Ochoa

    (Colegio de Postgraduados)

Abstract

The family of Inverse Gaussian (IG) distributions has applications in areas such as hydrology, lifetime testing, and reliability, among others. In this paper, a new characterization for this family of distributions is introduced and is used to propose a test of fit for the IG distribution hypothesis with unknown parameters. As a second test, observations are transformed to normal variables and then Shapiro-Wilk test is used to test for normality. Simulation results show that the proposed tests preserve the nominal test size and are competitive against some existing tests for the same problem. Three real datasets are used to illustrate the application of these tests.

Suggested Citation

  • José A. Villaseñor & Elizabeth González-Estrada & Adrián Ochoa, 2019. "On Testing the Inverse Gaussian Distribution Hypothesis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 60-74, June.
  • Handle: RePEc:spr:sankhb:v:81:y:2019:i:1:d:10.1007_s13571-017-0148-8
    DOI: 10.1007/s13571-017-0148-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-017-0148-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-017-0148-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Govind Mudholkar & Rajeshwari Natarajan, 2002. "The Inverse Gaussian Models: Analogues of Symmetry, Skewness and Kurtosis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 138-154, March.
    2. Norbert Henze & Bernhard Klar, 2002. "Goodness-of-Fit Tests for the Inverse Gaussian Distribution Based on the Empirical Laplace Transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 425-444, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yogendra P. Chaubey & Murari Singh & Debaraj Sen, 2017. "Symmetrizing and Variance Stabilizing Transformations of Sample Coefficient of Variation from Inverse Gaussian Distribution," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 217-246, November.
    2. Leiva, Víctor & Hernández, Hugo & Sanhueza, Antonio, 2008. "An R Package for a General Class of Inverse Gaussian Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 26(i04).
    3. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    4. Bojana Milošević & Marko Obradović, 2016. "New class of exponentiality tests based on U-empirical Laplace transform," Statistical Papers, Springer, vol. 57(4), pages 977-990, December.
    5. Lee, Sangyeol & Vonta, Ilia & Karagrigoriou, Alex, 2011. "A maximum entropy type test of fit," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2635-2643, September.
    6. Baringhaus, Ludwig & Gaigall, Daniel, 2015. "On an independence test approach to the goodness-of-fit problem," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 193-208.
    7. repec:jss:jstsof:26:i04 is not listed on IDEAS
    8. Meintanis, Simos G., 2008. "A new approach of goodness-of-fit testing for exponentiated laws applied to the generalized Rayleigh distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2496-2503, January.
    9. Steffen Betsch & Bruno Ebner, 2021. "Fixed point characterizations of continuous univariate probability distributions and their applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 31-59, February.
    10. Meintanis, Simos & Swanepoel, Jan, 2007. "Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1004-1013, June.
    11. Baringhaus, Ludwig & Gaigall, Daniel, 2023. "A goodness-of-fit test for the compound Poisson exponential model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    12. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    13. Mondal, Anjana & Kumar, Somesh, 2024. "Inference on order restricted means of inverse Gaussian populations under heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    14. Liu, Xuhua & Li, Na & Hu, Yuqin, 2015. "Combining inferences on the common mean of several inverse Gaussian distributions based on confidence distribution," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 136-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:81:y:2019:i:1:d:10.1007_s13571-017-0148-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.