IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1316-d794439.html
   My bibliography  Save this article

Testing for the Rayleigh Distribution: A New Test with Comparisons to Tests for Exponentiality Based on Transformed Data

Author

Listed:
  • Gerrit Lodewicus Grobler

    (School of Mathematical and Statistical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa)

  • Elzanie Bothma

    (School of Mathematical and Statistical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa)

  • James Samuel Allison

    (School of Mathematical and Statistical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa)

Abstract

We propose a new goodness-of-fit test for the Rayleigh distribution which is based on a distributional fixed-point property of the Stein characterization. The limiting null distribution of the test is derived and the consistency against fixed alternatives is also shown. The results of a finite-sample comparison is presented, where we compare the power performance of the new test to a variety of other tests. In addition to existing tests for the Rayleigh distribution we also exploit the link between the exponential and Rayleigh distributions. This allows us to include some powerful tests developed specifically for the exponential distribution in the comparison. It is found that the new test outperforms competing tests for many of the alternative distributions. Interestingly, the highest estimated power, against all alternative distributions considered, is obtained by one of the tests specifically developed for the Rayleigh distribution and not by any of the exponentiality tests based on the transformed data. The use of the new test is illustrated on a real-world COVID-19 data set.

Suggested Citation

  • Gerrit Lodewicus Grobler & Elzanie Bothma & James Samuel Allison, 2022. "Testing for the Rayleigh Distribution: A New Test with Comparisons to Tests for Exponentiality Based on Transformed Data," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1316-:d:794439
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ludwig Baringhaus & Norbert Henze, 1991. "A class of consistent tests for exponentiality based on the empirical Laplace transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(3), pages 551-564, September.
    2. Simos Meintanis & George Iliopoulos, 2003. "Tests of fit for the Rayleigh distribution based on the empirical Laplace transform," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(1), pages 137-151, March.
    3. Norbert Henze & Simos G. Meintanis, 2005. "Recent and classical tests for exponentiality: a partial review with comparisons," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(1), pages 29-45, February.
    4. Hadi Alizadeh Noughabi, 2015. "Empirical likelihood ratio-based goodness-of-fit test for the logistic distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 1973-1983, September.
    5. James S. Allison & Charl Pretorius, 2017. "A Monte Carlo evaluation of the performance of two new tests for symmetry," Computational Statistics, Springer, vol. 32(4), pages 1323-1338, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bojana Milošević & Marko Obradović, 2016. "New class of exponentiality tests based on U-empirical Laplace transform," Statistical Papers, Springer, vol. 57(4), pages 977-990, December.
    2. L. Baringhaus & B. Ebner & N. Henze, 2017. "The limit distribution of weighted $$L^2$$ L 2 -goodness-of-fit statistics under fixed alternatives, with applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 969-995, October.
    3. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "A new test of multivariate normality by a double estimation in a characterizing PDE," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(3), pages 401-427, April.
    4. Baringhaus, L. & Henze, N., 2008. "A new weighted integral goodness-of-fit statistic for exponentiality," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 1006-1016, June.
    5. E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
    6. Baringhaus, Ludwig & Taherizadeh, Fatemeh, 2010. "Empirical Hankel transforms and its applications to goodness-of-fit tests," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1445-1457, July.
    7. Haywood, John & Khmaladze, Estate, 2008. "On distribution-free goodness-of-fit testing of exponentiality," Journal of Econometrics, Elsevier, vol. 143(1), pages 5-18, March.
    8. J. S. Allison & L. Santana & N. Smit & I. J. H. Visagie, 2017. "An ‘apples to apples’ comparison of various tests for exponentiality," Computational Statistics, Springer, vol. 32(4), pages 1241-1283, December.
    9. M. Cockeran & S. G. Meintanis & L. Santana & J. S. Allison, 2021. "Goodness-of-fit testing of survival models in the presence of Type–II right censoring," Computational Statistics, Springer, vol. 36(2), pages 977-1010, June.
    10. Meintanis, Simos & Swanepoel, Jan, 2007. "Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 1004-1013, June.
    11. Simos G. Meintanis & Bojana Milošević & Marko Obradović, 2020. "Goodness-of-fit tests in conditional duration models," Statistical Papers, Springer, vol. 61(1), pages 123-140, February.
    12. L. Baringhaus & N. Henze, 2017. "Cramér–von Mises distance: probabilistic interpretation, confidence intervals, and neighbourhood-of-model validation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 167-188, April.
    13. Jovanović, Milan & Milošević, Bojana & Nikitin, Ya. Yu. & Obradović, Marko & Volkova, K. Yu., 2015. "Tests of exponentiality based on Arnold–Villasenor characterization and their efficiencies," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 100-113.
    14. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    15. Sudheesh K. Kattumannil & P. Anisha, 2019. "A simple non-parametric test for decreasing mean time to failure," Statistical Papers, Springer, vol. 60(1), pages 73-87, February.
    16. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    17. Nora Gürtler & Norbert Henze, 2000. "Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(2), pages 267-286, June.
    18. Theodore Hill & Victor Perez-Abreu, 2001. "Extreme-Value Moment Goodness-of-Fit Tests," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 543-551, September.
    19. Ruhul Ali Khan & Dhrubasish Bhattacharyya & Murari Mitra, 2021. "Exact and asymptotic tests of exponentiality against nonmonotonic mean time to failure type alternatives," Statistical Papers, Springer, vol. 62(6), pages 3015-3045, December.
    20. Marija Cuparić & Bojana Milošević, 2022. "New characterization-based exponentiality tests for randomly censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 461-487, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1316-:d:794439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.