IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v67y2004i2p161-171.html
   My bibliography  Save this article

On the simulation size and the convergence of the Monte Carlo EM algorithm via likelihood-based distances

Author

Listed:
  • Eickhoff, Jens C.
  • Zhu, Jun
  • Amemiya, Yasuo

Abstract

When the conditional expectation of a complete-data likelihood in an EM algorithm is analytically intractable, Monte Carlo integration is often used to approximate the E-step. While the resulting Monte Carlo EM algorithm (MCEM) is flexible, assessing convergence of the algorithm is a more difficult task than the original EM algorithm, because of the uncertainty involved in the Monte Carlo approximation. In this note, we propose a convergence criterion using a likelihood-based distance. Because the likelihood is approximated by Monte Carlo integration, we make the distance small with a large probability by selecting the Monte Carlo sample size adaptively at each step of the MCEM algorithm. We implement the proposed convergence criterion along with the simulation size selection in a one-way random effects model. The result shows that our MCEM iterations match the exact EM iterations closely.

Suggested Citation

  • Eickhoff, Jens C. & Zhu, Jun & Amemiya, Yasuo, 2004. "On the simulation size and the convergence of the Monte Carlo EM algorithm via likelihood-based distances," Statistics & Probability Letters, Elsevier, vol. 67(2), pages 161-171, April.
  • Handle: RePEc:eee:stapro:v:67:y:2004:i:2:p:161-171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(04)00025-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    2. J.‐Q. Shi & S.‐Y. Lee, 2000. "Latent variable models with mixed continuous and polytomous data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 77-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Zhu & J. C. Eickhoff & P. Yan, 2005. "Generalized Linear Latent Variable Models for Repeated Measures of Spatially Correlated Multivariate Data," Biometrics, The International Biometric Society, vol. 61(3), pages 674-683, September.
    2. Ricardo Smith Ramírez, 2007. "FIML estimation of treatment effect models with endogenous selection and multiple censored responses via a Monte Carlo EM Algorithm," Working Papers DTE 403, CIDE, División de Economía.
    3. Liu Yuan & Bottai Matteo, 2009. "Mixed-Effects Models for Conditional Quantiles with Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    2. Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
    3. Celine Marielle Laffont & Marc Vandemeulebroecke & Didier Concordet, 2014. "Multivariate Analysis of Longitudinal Ordinal Data With Mixed Effects Models, With Application to Clinical Outcomes in Osteoarthritis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 955-966, September.
    4. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    5. Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
    6. J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
    7. Sik-Yum Lee & Liang Xu, 2003. "Case-Deletion Diagnostics for Factor Analysis Models With Continuous and Ordinal Categorical Data," Sociological Methods & Research, , vol. 31(3), pages 389-419, February.
    8. Jan Pablo Burgard & Patricia Dörr & Ralf Münnich, 2020. "Monte-Carlo Simulation Studies in Survey Statistics – An Appraisal," Research Papers in Economics 2020-04, University of Trier, Department of Economics.
    9. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    10. Patricia Dörr & Jan Pablo Burgard, 2019. "Data-driven transformations and survey-weighting for linear mixed models," Research Papers in Economics 2019-16, University of Trier, Department of Economics.
    11. Hongbin Zhang & Lang Wu, 2018. "A non‐linear model for censored and mismeasured time varying covariates in survival models, with applications in human immunodeficiency virus and acquired immune deficiency syndrome studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1437-1450, November.
    12. Tortora, Cristina & Franczak, Brian C. & Bagnato, Luca & Punzo, Antonio, 2024. "A Laplace-based model with flexible tail behavior," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    13. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    14. Fan, Chunpeng & Zhang, Donghui, 2014. "Wald-type rank tests: A GEE approach," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 1-16.
    15. Bedair, Khaled & Hong, Yili & Li, Jie & Al-Khalidi, Hussein R., 2016. "Multivariate frailty models for multi-type recurrent event data and its application to cancer prevention trial," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 161-173.
    16. Cheng, Jing & Chan, Ngai Hang, 2019. "Efficient inference for nonlinear state space models: An automatic sample size selection rule," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 143-154.
    17. Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
    18. Yang, Ying & Kang, Jian, 2010. "Joint analysis of mixed Poisson and continuous longitudinal data with nonignorable missing values," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 193-207, January.
    19. Torabi, Mahmoud, 2012. "Likelihood inference in generalized linear mixed models with two components of dispersion using data cloning," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4259-4265.
    20. Qin, Guoyou & Zhu, Zhongyi, 2007. "Robust estimation in generalized semiparametric mixed models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1658-1683, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:67:y:2004:i:2:p:161-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.