Joint analysis of mixed Poisson and continuous longitudinal data with nonignorable missing values
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dimitris Karlis, 2003. "An EM algorithm for multivariate Poisson distribution and related models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(1), pages 63-77.
- Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz & Amy H. Herring, 2005. "Missing-Data Methods for Generalized Linear Models: A Comparative Review," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 332-346, March.
- Roy J. & Lin X., 2002. "Analysis of Multivariate Longitudinal Outcomes With Nonignorable Dropouts and Missing Covariates: Changes in Methadone Treatment Practices," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 40-52, March.
- J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xuerong Chen & Guoqing Diao & Jing Qin, 2020. "Pseudo likelihood‐based estimation and testing of missingness mechanism function in nonignorable missing data problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1377-1400, December.
- Wenqiong Xue & Jian Kang & F. DuBois Bowman & Tor D. Wager & Jian Guo, 2014. "Identifying functional co-activation patterns in neuroimaging studies via poisson graphical models," Biometrics, The International Biometric Society, vol. 70(4), pages 812-822, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
- Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
- Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
- Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
- Ricardo Smith Ramírez, 2007. "FIML estimation of treatment effect models with endogenous selection and multiple censored responses via a Monte Carlo EM Algorithm," Working Papers DTE 403, CIDE, División de Economía.
- Kalema, George & Molenberghs, Geert, 2016. "Generating Correlated and/or Overdispersed Count Data: A SAS Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(c01).
- Brent A. Coull & Alan Agresti, 2000. "Random Effects Modeling of Multiple Binomial Responses Using the Multivariate Binomial Logit-Normal Distribution," Biometrics, The International Biometric Society, vol. 56(1), pages 73-80, March.
- J. E. Mills & C. A. Field & D. J. Dupuis, 2002. "Marginally Specified Generalized Linear Mixed Models: A Robust Approach," Biometrics, The International Biometric Society, vol. 58(4), pages 727-734, December.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
- Li Cai & Lijie Gu & Qihua Wang & Suojin Wang, 2021. "Simultaneous confidence bands for nonparametric regression with missing covariate data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1249-1279, December.
- Jan Pablo Burgard & Patricia Dörr & Ralf Münnich, 2020. "Monte-Carlo Simulation Studies in Survey Statistics – An Appraisal," Research Papers in Economics 2020-04, University of Trier, Department of Economics.
- McDonough, Ian K. & Millimet, Daniel L., 2017.
"Missing data, imputation, and endogeneity,"
Journal of Econometrics, Elsevier, vol. 199(2), pages 141-155.
- McDonough, Ian K. & Millimet, Daniel L., 2016. "Missing Data, Imputation, and Endogeneity," IZA Discussion Papers 10402, Institute of Labor Economics (IZA).
- J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
- Xie Yanmei & Zhang Biao, 2017. "Empirical Likelihood in Nonignorable Covariate-Missing Data Problems," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-20, May.
- Guo-Liang Tian & Xiqian Ding & Yin Liu & Man-Lai Tang, 2019. "Some new statistical methods for a class of zero-truncated discrete distributions with applications," Computational Statistics, Springer, vol. 34(3), pages 1393-1426, September.
- Kauermann, Goran & Xu, Ronghui & Vaida, Florin, 2008. "Stacked Laplace-EM algorithm for duration models with time-varying and random effects," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2514-2528, January.
- Breunig, Christoph, 2015. "Testing missing at random using instrumental variables," SFB 649 Discussion Papers 2015-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Steffen Nestler & Sarah Humberg, 2022. "A Lasso and a Regression Tree Mixed-Effect Model with Random Effects for the Level, the Residual Variance, and the Autocorrelation," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 506-532, June.
- Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
- Lei Jin & Suojin Wang, 2010. "A Model Validation Procedure when Covariate Data are Missing at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 403-421, September.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:1:p:193-207. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.