IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i2p231-244.html
   My bibliography  Save this article

Efficient direct sampling MCEM algorithm for latent variable models with binary responses

Author

Listed:
  • An, Xinming
  • Bentler, Peter M.

Abstract

While latent variable models have been successfully applied in many fields and underpin various modeling techniques, their ability to incorporate categorical responses is hindered due to the lack of accurate and efficient estimation methods. Approximation procedures, such as penalized quasi-likelihood, are computationally efficient, but the resulting estimators can be seriously biased for binary responses. Gauss–Hermite quadrature and Markov Chain Monte Carlo (MCMC) integration based methods can yield more accurate estimation, but they are computationally much more intensive. Estimation methods that can achieve both computational efficiency and estimation accuracy are still under development. This paper proposes an efficient direct sampling based Monte Carlo EM algorithm (DSMCEM) for latent variable models with binary responses. Mixed effects and item factor analysis models with binary responses are used to illustrate this algorithm. Results from two simulation studies and a real data example suggest that, as compared with MCMC based EM, DSMCEM can significantly improve computational efficiency as well as produce equally accurate parameter estimates. Other aspects and extensions of the algorithm are discussed.

Suggested Citation

  • An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:231-244
    DOI: 10.1016/j.csda.2011.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002453
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2011.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.‐Q. Shi & S.‐Y. Lee, 2000. "Latent variable models with mixed continuous and polytomous data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 77-87.
    2. Harvey Goldstein & Jon Rasbash, 1996. "Improved Approximations for Multilevel Models with Binary Responses," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 505-513, May.
    3. Germáan Rodríguez & Noreen Goldman, 1995. "An Assessment of Estimation Procedures for Multilevel Models with Binary Responses," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(1), pages 73-89, January.
    4. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    5. Sik-Yum Lee & Jian-Qing Shi, 2001. "Maximum Likelihood Estimation of Two-Level Latent Variable Models with Mixed Continuous and Polytomous Data," Biometrics, The International Biometric Society, vol. 57(3), pages 787-794, September.
    6. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    7. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    8. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    9. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    10. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    2. Wang, Liqun & Lee, Chel Hee, 2014. "Discretization-based direct random sample generation," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1001-1010.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
    2. Cho, S.-J. & Rabe-Hesketh, S., 2011. "Alternating imputation posterior estimation of models with crossed random effects," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 12-25, January.
    3. Silvia Cagnone & Paola Monari, 2013. "Latent variable models for ordinal data by using the adaptive quadrature approximation," Computational Statistics, Springer, vol. 28(2), pages 597-619, April.
    4. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    5. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    6. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    7. Anders Skrondal & Sophia Rabe‐Hesketh, 2009. "Prediction in multilevel generalized linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 659-687, June.
    8. Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," Journal of Econometrics, Elsevier, vol. 128(2), pages 301-323, October.
    9. Bianconcini, Silvia & Cagnone, Silvia, 2012. "Estimation of generalized linear latent variable models via fully exponential Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 183-193.
    10. Li Cai, 2010. "Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 307-335, June.
    11. Sik-Yum Lee & Xin-Yuan Song, 2004. "Maximum Likelihood Analysis of a General Latent Variable Model with Hierarchically Mixed Data," Biometrics, The International Biometric Society, vol. 60(3), pages 624-636, September.
    12. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    13. Shing-On Leung, 2008. "A Three-Dimensional Latent Variable Model for Attitude Scales," Sociological Methods & Research, , vol. 37(1), pages 135-154, August.
    14. Steffen Nestler & Edgar Erdfelder, 2023. "Random Effects Multinomial Processing Tree Models: A Maximum Likelihood Approach," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 809-829, September.
    15. Renard, Didier & Molenberghs, Geert & Geys, Helena, 2004. "A pairwise likelihood approach to estimation in multilevel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 649-667, January.
    16. Sik-Yum Lee & Liang Xu, 2003. "Case-Deletion Diagnostics for Factor Analysis Models With Continuous and Ordinal Categorical Data," Sociological Methods & Research, , vol. 31(3), pages 389-419, February.
    17. Xia, Ye-Mao & Tang, Nian-Sheng & Gou, Jian-Wei, 2016. "Generalized linear latent models for multivariate longitudinal measurements mixed with hidden Markov models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 259-275.
    18. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    19. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    20. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:2:p:231-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.