IDEAS home Printed from https://ideas.repec.org/a/sae/somere/v35y2007i3p352-381.html
   My bibliography  Save this article

A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data

Author

Listed:
  • Sik-Yum Lee

    (The Chinese University of Hong Kong, China)

  • Xin-Yuan Song

    (The Chinese University of Hong Kong, China)

Abstract

In this article, the authors present a unified approach for maximum likelihood analysis of structural equation models that involve subtle model formulations and nonstandard data structures. Based on the idea of data augmentation, they describe a generic Monte Carlo expectation-maximization algorithm for estimation. They propose path sampling for computing the observed data likelihood functions that usually involve complicated integrals and show how to apply this method for computing the Bayesian information criterion for model comparison. An application of the proposed unified approach to a two-level nonlinear structural equation model with missing continuous and ordered categorical data is presented. An illustrative example with a real data set is given.

Suggested Citation

  • Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
  • Handle: RePEc:sae:somere:v:35:y:2007:i:3:p:352-381
    DOI: 10.1177/0049124106292357
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0049124106292357
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0049124106292357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jian Qing Shi & John Copas, 2002. "Publication bias and meta‐analysis for 2×2 tables: an average Markov chain Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 221-236, May.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. Sik-Yum Lee & Jian-Qing Shi, 2001. "Maximum Likelihood Estimation of Two-Level Latent Variable Models with Mixed Continuous and Polytomous Data," Biometrics, The International Biometric Society, vol. 57(3), pages 787-794, September.
    4. Sik-Yum Lee & Xin-Yuan Song, 2003. "Model comparison of nonlinear structural equation models with fixed covariates," Psychometrika, Springer;The Psychometric Society, vol. 68(1), pages 27-47, March.
    5. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    6. J.‐Q. Shi & S.‐Y. Lee, 2000. "Latent variable models with mixed continuous and polytomous data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 77-87.
    7. Hong-Tu Zhu & Sik-Yum Lee, 2001. "A Bayesian analysis of finite mixtures in the LISREL model," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 133-152, March.
    8. Brian S. Caffo & Wolfgang Jank & Galin L. Jones, 2005. "Ascent‐based Monte Carlo expectation– maximization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 235-251, April.
    9. Sik-Yum Lee & Hong-Tu Zhu, 2002. "Maximum likelihood estimation of nonlinear structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 189-210, June.
    10. Sik-Yum Lee & Xin-Yuan Song, 2004. "Maximum Likelihood Analysis of a General Latent Variable Model with Hierarchically Mixed Data," Biometrics, The International Biometric Society, vol. 60(3), pages 624-636, September.
    11. Sik-Yum Lee & Xin-Yuan Song, 2003. "Maximum Likelihood Estimation and Model Comparison for Mixtures of Structural Equation Models with Ignorable Missing Data," Journal of Classification, Springer;The Classification Society, vol. 20(2), pages 221-255, September.
    12. Mary Dupuis Sammel & Louise M. Ryan & Julie M. Legler, 1997. "Latent Variable Models for Mixed Discrete and Continuous Outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 667-678.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Sik-Yum & Song, Xin-Yuan, 2008. "On Bayesian estimation and model comparison of an integrated structural equation model," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4814-4827, June.
    2. Sik-Yum Lee & Xin-Yuan Song, 2004. "Maximum Likelihood Analysis of a General Latent Variable Model with Hierarchically Mixed Data," Biometrics, The International Biometric Society, vol. 60(3), pages 624-636, September.
    3. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    4. Celine Marielle Laffont & Marc Vandemeulebroecke & Didier Concordet, 2014. "Multivariate Analysis of Longitudinal Ordinal Data With Mixed Effects Models, With Application to Clinical Outcomes in Osteoarthritis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 955-966, September.
    5. Sik-Yum Lee & Liang Xu, 2003. "Case-Deletion Diagnostics for Factor Analysis Models With Continuous and Ordinal Categorical Data," Sociological Methods & Research, , vol. 31(3), pages 389-419, February.
    6. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    7. Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
    8. Zhang, Yan-Qing & Tian, Guo-Liang & Tang, Nian-Sheng, 2016. "Latent variable selection in structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 190-205.
    9. Koutchadé, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modelling of production decisions of heterogeneous farmers with mixed models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205098, Agricultural and Applied Economics Association.
    10. Koutchade, Philippe & Carpentier, Alain & Femenia, Fabienne, 2015. "Accounting for unobserved heterogeneity in micro-econometric agricultural production models: a random parameter approach," 2015 Conference, August 9-14, 2015, Milan, Italy 212015, International Association of Agricultural Economists.
    11. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
    12. Wang, Yong, 2010. "Fisher scoring: An interpolation family and its Monte Carlo implementations," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1744-1755, July.
    13. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    14. Chunjie Wang & Bo Zhao & Linlin Luo & Xinyuan Song, 2021. "Regression analysis of current status data with latent variables," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 413-436, July.
    15. Lee, Sik-Yum & Song, Xin-Yuan, 2003. "Maximum likelihood estimation and model comparison of nonlinear structural equation models with continuous and polytomous variables," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 125-142, October.
    16. Eickhoff, Jens C. & Zhu, Jun & Amemiya, Yasuo, 2004. "On the simulation size and the convergence of the Monte Carlo EM algorithm via likelihood-based distances," Statistics & Probability Letters, Elsevier, vol. 67(2), pages 161-171, April.
    17. Elff, Martin & Heisig, Jan Paul & Schaeffer, Merlin & Shikano, Susumu, 2016. "No Need to Turn Bayesian in Multilevel Analysis with Few Clusters: How Frequentist Methods Provide Unbiased Estimates and Accurate Inference," SocArXiv z65s4, Center for Open Science.
    18. F. Nathoo & C. B. Dean, 2007. "A Mixed Mover–Stayer Model for Spatiotemporal Two-State Processes," Biometrics, The International Biometric Society, vol. 63(3), pages 881-891, September.
    19. Sik-Yum Lee & Liang Xu, 2003. "On local influence analysis of full information item factor models," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 339-360, September.
    20. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:somere:v:35:y:2007:i:3:p:352-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.