The use of approximating models in Monte Carlo maximum likelihood estimation
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
- Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
- P. Vidoni, 1999. "Exponential family state space models based on a conjugate latent process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 213-221.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Richard A. Davis & Thomas C. M. Lee & Gabriel A. Rodriguez‐Yam, 2008. "Break Detection for a Class of Nonlinear Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 834-867, September.
- Christian N. Brinch, 2008. "Simulated Maximum Likelihood using Tilted Importance Sampling," Discussion Papers 540, Statistics Norway, Research Department.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
- Kostas Triantafyllopoulos, 2009. "Inference of Dynamic Generalized Linear Models: On‐Line Computation and Appraisal," International Statistical Review, International Statistical Institute, vol. 77(3), pages 430-450, December.
- de Pinho, Frank M. & Franco, Glaura C. & Silva, Ralph S., 2016. "Modeling volatility using state space models with heavy tailed distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 108-127.
- Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
- Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
- Brannas, Kurt, 1995. "Prediction and control for a time-series count data model," International Journal of Forecasting, Elsevier, vol. 11(2), pages 263-270, June.
- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- Youn Ahn, Jae & Jeong, Himchan & Lu, Yang, 2021. "On the ordering of credibility factors," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 626-638.
- HEINEN, Andréas, 2003.
"Modelling time series count data: an autoregressive conditional Poisson model,"
LIDAM Discussion Papers CORE
2003062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Heinen, Andreas, 2003. "Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model," MPRA Paper 8113, University Library of Munich, Germany.
- Nobuhiko Terui & Masataka Ban, 2013. "Multivariate Time Series Model with Hierarchical Structure for Over-dispersed Discrete Outcomes," TMARG Discussion Papers 113, Graduate School of Economics and Management, Tohoku University, revised Aug 2013.
- Harvey, Andrew, 2010. "Tracking a changing copula," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 485-500, June.
- Svetunkov, Ivan & Boylan, John E., 2023. "iETS: State space model for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 265(C).
- Shang, Zuofeng, 2012. "On latent process models in multi-dimensional space," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1259-1266.
- Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
- Shirozhan, M. & Bakouch, Hassan S. & Mohammadpour, M., 2023. "A flexible INAR(1) time series model with dependent zero-inflated count series and medical contagious cases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 216-230.
- Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
- Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009.
"Monitoring processes with changing variances,"
International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
- J. Keith Ord & Rob J. Hyndman & Anne B. Koehler & Ralph D. Snyder, 2008. "Monitoring Processes with Changing Variances," Monash Econometrics and Business Statistics Working Papers 4/08, Monash University, Department of Econometrics and Business Statistics.
- J. Keith Ord, 2008. "Monitoring Processes with Changing Variances," Working Papers 2008-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Axel Groß‐KlußMann & Nikolaus Hautsch, 2013.
"Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
- Groß-Klußmann, Axel & Hautsch, Nikolaus, 2011. "Predicting bid-ask spreads using long memory autoregressive conditional poisson models," SFB 649 Discussion Papers 2011-044, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Boris Aleksandrov & Christian H. Weiß, 2020. "Testing the dispersion structure of count time series using Pearson residuals," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 325-361, September.
- Nobuhiko Terui & Masataka Ban & Toshihiko Maki, 2010. "Finding market structure by sales count dynamics—Multivariate structural time series models with hierarchical structure for count data—," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 91-107, February.
More about this item
Keywords
Conjugate latent process Generalised linear mixed model Importance sampling Marginal likelihood Monte Carlo simulation Random effects model;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:45:y:1999:i:4:p:325-333. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.