IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v101y2021ipbp626-638.html
   My bibliography  Save this article

On the ordering of credibility factors

Author

Listed:
  • Youn Ahn, Jae
  • Jeong, Himchan
  • Lu, Yang

Abstract

Traditional credibility analysis of risks in insurance is based on the random effects model, where the heterogeneity across the policyholders is assumed to be time-invariant. One popular extension is the dynamic random effects (or state-space) model. However, while the latter allows for time-varying heterogeneity, its application to the credibility analysis should be conducted with care due to the possibility of negative credibilities per period [see Pinquet (2020a)]. Another important but under-explored topic is the ordering of the credibility factors in a monotonous manner—recent claims ought to have larger weights than the old ones. This paper shows that the ordering of the covariance structure of the random effects in the dynamic random effects model does not necessarily imply that of the credibility factors. Subsequently, we show that the state-space model, with AR(1)-type autocorrelation function, guarantees the ordering of the credibility factors. Simulation experiments and a case study with a real dataset are conducted to show the relevance in insurance applications.

Suggested Citation

  • Youn Ahn, Jae & Jeong, Himchan & Lu, Yang, 2021. "On the ordering of credibility factors," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 626-638.
  • Handle: RePEc:eee:insuma:v:101:y:2021:i:pb:p:626-638
    DOI: 10.1016/j.insmatheco.2021.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766872100158X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    2. Jeong, Himchan, 2020. "Testing For Random Effects In Compound Risk Models Via Bregman Divergence," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 777-798, September.
    3. Sundt, Bjorn, 1988. "Credibility estimators with geometric weights," Insurance: Mathematics and Economics, Elsevier, vol. 7(2), pages 113-122, April.
    4. Pinquet, Jean & Guillén, Montserrat & Bolancé, Catalina, 2001. "Allowance for the Age of Claims in Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 31(2), pages 337-348, November.
    5. Bolance, Catalina & Guillen, Montserrat & Pinquet, Jean, 2003. "Time-varying credibility for frequency risk models: estimation and tests for autoregressive specifications on the random effects," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 273-282, October.
    6. Peng Shi & Wei Zhang, 2016. "A Test of Asymmetric Learning in Competitive Insurance With Partial Information Sharing," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 557-578, September.
    7. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    8. Sutradhar, Brajendra C. & Jowaheer, Vandna, 2003. "On familial longitudinal Poisson mixed models with gamma random effects," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 398-412, November.
    9. Dominique Henriet & Jean-Charles Rochet, 1986. "La logique des systèmes bonus-malus en assurance automobile: une approche théorique," Annals of Economics and Statistics, GENES, issue 1, pages 133-152.
    10. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    11. Natacha Brouhns & Montserrat Guillén & Michel Denuit & Jean Pinquet, 2003. "Bonus‐Malus Scales in Segmented Tariffs With Stochastic Migration Between Segments," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 577-599, December.
    12. repec:adr:anecst:y:1986:i:1:p:07 is not listed on IDEAS
    13. Abdallah, Anas & Boucher, Jean-Philippe & Cossette, Hélène, 2016. "Sarmanov family of multivariate distributions for bivariate dynamic claim counts model," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 120-133.
    14. Gourieroux, C. & Jasiak, J., 2004. "Heterogeneous INAR(1) model with application to car insurance," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 177-192, April.
    15. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    16. Pinquet, Jean, 2020. "Positivity properties of the ARFIMA(0,d,0) specifications and credibility analysis of frequency risks," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 159-165.
    17. Pinquet, Jean, 2020. "Poisson Models With Dynamic Random Effects And Nonnegative Credibilities Per Period," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 585-618, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minwoo Kim & Himchan Jeong & Dipak Dey, 2022. "Approximation of Zero-Inflated Poisson Credibility Premium via Variational Bayes Approach," Risks, MDPI, vol. 10(3), pages 1-11, March.
    2. Calcetero Vanegas, Sebastián & Badescu, Andrei L. & Lin, X. Sheldon, 2024. "Effective experience rating for large insurance portfolios via surrogate modeling," Insurance: Mathematics and Economics, Elsevier, vol. 118(C), pages 25-43.
    3. Sebastian Calcetero-Vanegas & Andrei L. Badescu & X. Sheldon Lin, 2022. "Effective experience rating for large insurance portfolios via surrogate modeling," Papers 2211.06568, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    2. Pinquet, Jean, 2020. "Positivity properties of the ARFIMA(0,d,0) specifications and credibility analysis of frequency risks," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 159-165.
    3. Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.
    4. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    6. Tan, Chong It, 2016. "Varying transition rules in bonus–malus systems: From rules specification to determination of optimal relativities," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 134-140.
    7. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    8. Bolancé, Catalina & Guillén, Montserrat & Pinquet, Jean, 2008. "On the link between credibility and frequency premium," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 209-213, October.
    9. Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
    10. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
    11. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    13. Shi, Peng & Valdez, Emiliano A., 2011. "A copula approach to test asymmetric information with applications to predictive modeling," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 226-239, September.
    14. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    15. Brannas, Kurt, 1995. "Prediction and control for a time-series count data model," International Journal of Forecasting, Elsevier, vol. 11(2), pages 263-270, June.
    16. Gourieroux, C. & Jasiak, J., 2004. "Heterogeneous INAR(1) model with application to car insurance," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 177-192, April.
    17. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    18. HEINEN, Andréas, 2003. "Modelling time series count data: an autoregressive conditional Poisson model," LIDAM Discussion Papers CORE 2003062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Nobuhiko Terui & Masataka Ban, 2013. "Multivariate Time Series Model with Hierarchical Structure for Over-dispersed Discrete Outcomes," TMARG Discussion Papers 113, Graduate School of Economics and Management, Tohoku University, revised Aug 2013.
    20. Dionne, Georges & Michaud, Pierre-Carl & Pinquet, Jean, 2013. "A review of recent theoretical and empirical analyses of asymmetric information in road safety and automobile insurance," Research in Transportation Economics, Elsevier, vol. 43(1), pages 85-97.

    More about this item

    Keywords

    Dependence; Posterior ratemaking; Credibility; Auto insurance; Time series; Dynamic random effects;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:101:y:2021:i:pb:p:626-638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.