IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v61y1999i1p213-221.html
   My bibliography  Save this article

Exponential family state space models based on a conjugate latent process

Author

Listed:
  • P. Vidoni

Abstract

This paper introduces non‐linear and non‐Gaussian state space models with analytic updating recursions for filtering and prediction. This new class of models involves some well‐known results in the theory of exponential models and of exponential dispersion models and the latent process is defined in such a way that both the filtering and the prediction distributions turn out to be conjugate to the observation distribution at each step. The corresponding analytic and inferential properties are investigated and some simple examples are presented.

Suggested Citation

  • P. Vidoni, 1999. "Exponential family state space models based on a conjugate latent process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 213-221.
  • Handle: RePEc:bla:jorssb:v:61:y:1999:i:1:p:213-221
    DOI: 10.1111/1467-9868.00172
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00172
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kostas Triantafyllopoulos, 2009. "Inference of Dynamic Generalized Linear Models: On‐Line Computation and Appraisal," International Statistical Review, International Statistical Institute, vol. 77(3), pages 430-450, December.
    2. de Pinho, Frank M. & Franco, Glaura C. & Silva, Ralph S., 2016. "Modeling volatility using state space models with heavy tailed distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 108-127.
    3. Ferrante, Marco & Vidoni, Paolo, 1999. "A Gaussian-generalized inverse Gaussian finite-dimensional filter," Stochastic Processes and their Applications, Elsevier, vol. 84(1), pages 165-176, November.
    4. Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
    5. Vidoni Paolo, 2004. "Constructing Non-linear Gaussian Time Series by Means of a Simplified State Space Representation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
    6. T. R. Santos, 2018. "A Bayesian GED-Gamma stochastic volatility model for return data: a marginal likelihood approach," Papers 1809.01489, arXiv.org.
    7. Ferrante, Marco & Frigo, Nadia, 2009. "Particle filtering approximations for a Gaussian-generalized inverse Gaussian model," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 442-449, February.
    8. Kuk, Anthony Y. C., 1999. "The use of approximating models in Monte Carlo maximum likelihood estimation," Statistics & Probability Letters, Elsevier, vol. 45(4), pages 325-333, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:61:y:1999:i:1:p:213-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.