IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i7p1259-1266.html
   My bibliography  Save this article

On latent process models in multi-dimensional space

Author

Listed:
  • Shang, Zuofeng

Abstract

Latent process models have been widely applied to time series and spatial data which involve complex correlation structures. However, the existing approaches assume a known distributional property of the observations given the latent process. Furthermore, there seems to be no literature treating the asymptotic properties of the latent process model in general multi-dimensional space (with dimension bigger than 2). In this paper, we propose to estimate the unknown model parameters of the latent process model in multi-dimensional space by an M-estimation approach, and derive the asymptotic normality, together with the explicit limiting variance matrix, for the estimates. The proposed method is of a distribution-free feature. Applications in three concrete situations are demonstrated.

Suggested Citation

  • Shang, Zuofeng, 2012. "On latent process models in multi-dimensional space," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1259-1266.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1259-1266
    DOI: 10.1016/j.spl.2012.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    2. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    3. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    4. Blais, Michel & MacGibbon, Brenda & Roy, Roch, 2000. "Limit theorems for regression models of time series of counts," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 161-168, January.
    5. Richard A. Davis & Rongning Wu, 2009. "A negative binomial model for time series of counts," Biometrika, Biometrika Trust, vol. 96(3), pages 735-749.
    6. M. J. Campbell, 1994. "Time Series Regression for Counts: An Investigation into the Relationship between Sudden Infant Death Syndrome and Environmental Temperature," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(2), pages 191-208, March.
    7. Pei-Sheng Lin, 2008. "Estimating equations for spatially correlated data in multi-dimensional space," Biometrika, Biometrika Trust, vol. 95(4), pages 847-858.
    8. Ronald E. Gangnon & Murray K. Clayton, 2000. "Bayesian Detection and Modeling of Spatial Disease Clustering," Biometrics, The International Biometric Society, vol. 56(3), pages 922-935, September.
    9. Davidson, James, 1992. "A Central Limit Theorem for Globally Nonstationary Near-Epoch Dependent Functions of Mixing Processes," Econometric Theory, Cambridge University Press, vol. 8(3), pages 313-329, September.
    10. N. Rao Chaganty & Harry Joe, 2004. "Efficiency of generalized estimating equations for binary responses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 851-860, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Rongning, 2012. "On variance estimation in a negative binomial time series regression model," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 145-155.
    2. William Dunsmuir & Jieyi He, 2017. "Marginal Estimation of Parameter Driven Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 120-144, January.
    3. HEINEN, Andréas, 2003. "Modelling time series count data: an autoregressive conditional Poisson model," LIDAM Discussion Papers CORE 2003062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    5. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    6. Brannas, Kurt, 1995. "Prediction and control for a time-series count data model," International Journal of Forecasting, Elsevier, vol. 11(2), pages 263-270, June.
    7. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    8. Youn Ahn, Jae & Jeong, Himchan & Lu, Yang, 2021. "On the ordering of credibility factors," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 626-638.
    9. Nobuhiko Terui & Masataka Ban, 2013. "Multivariate Time Series Model with Hierarchical Structure for Over-dispersed Discrete Outcomes," TMARG Discussion Papers 113, Graduate School of Economics and Management, Tohoku University, revised Aug 2013.
    10. Harvey, Andrew, 2010. "Tracking a changing copula," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 485-500, June.
    11. Svetunkov, Ivan & Boylan, John E., 2023. "iETS: State space model for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 265(C).
    12. Fu, Liya & Wang, You-Gan, 2016. "Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 492-502.
    13. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    14. Shirozhan, M. & Bakouch, Hassan S. & Mohammadpour, M., 2023. "A flexible INAR(1) time series model with dependent zero-inflated count series and medical contagious cases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 216-230.
    15. Wu, Rongning & Cao, Jiguo, 2011. "Blockwise empirical likelihood for time series of counts," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 661-673, March.
    16. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    17. Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009. "Monitoring processes with changing variances," International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
    18. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
    19. Boris Aleksandrov & Christian H. Weiß, 2020. "Testing the dispersion structure of count time series using Pearson residuals," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 325-361, September.
    20. Nobuhiko Terui & Masataka Ban & Toshihiko Maki, 2010. "Finding market structure by sales count dynamics—Multivariate structural time series models with hierarchical structure for count data—," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 91-107, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1259-1266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.