IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v103y2015icp62-72.html
   My bibliography  Save this article

Maxima of a triangular array of multivariate Gaussian sequence

Author

Listed:
  • Hashorva, Enkelejd
  • Peng, Liang
  • Weng, Zhichao

Abstract

It is known that the normalized maxima of a sequence of independent and identically distributed bivariate normal random vectors with correlation coefficient ρ∈[−1,1) is asymptotically independent, which implies that using bivariate normal distribution will seriously underestimate extreme co-movement in practice. By letting ρ depend on the sample size and go to one with certain rate, Hüsler and Reiss (1989) showed that the normalized maxima of Gaussian random vectors can become asymptotically dependent so as to well predict the co-movement observed in the market. In this paper, we extend such a study to a triangular array of a multivariate Gaussian sequence, which further generalizes the results in Hsing et al. (1996) and Hashorva and Weng (2013).

Suggested Citation

  • Hashorva, Enkelejd & Peng, Liang & Weng, Zhichao, 2015. "Maxima of a triangular array of multivariate Gaussian sequence," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 62-72.
  • Handle: RePEc:eee:stapro:v:103:y:2015:i:c:p:62-72
    DOI: 10.1016/j.spl.2015.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215001170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hashorva, Enkelejd & Weng, Zhichao, 2013. "Limit laws for extremes of dependent stationary Gaussian arrays," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 320-330.
    2. Frick, Melanie & Reiss, Rolf-Dieter, 2013. "Expansions and penultimate distributions of maxima of bivariate normal random vectors," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2563-2568.
    3. Manjunath, B.G. & Frick, Melanie & Reiss, Rolf-Dieter, 2012. "Some notes on extremal discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 107-115, January.
    4. Hüsler, Jürg & Reiss, Rolf-Dieter, 1989. "Maxima of normal random vectors: Between independence and complete dependence," Statistics & Probability Letters, Elsevier, vol. 7(4), pages 283-286, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinhui Guo & Yingyin Lu, 2023. "Joint behavior of point processes of clusters and partial sums for stationary bivariate Gaussian triangular arrays," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 17-37, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashorva, Enkelejd & Weng, Zhichao, 2013. "Limit laws for extremes of dependent stationary Gaussian arrays," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 320-330.
    2. Weng, Zhichao & Liao, Xin, 2017. "Second order expansions of distributions of maxima of bivariate Gaussian triangular arrays under power normalization," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 33-43.
    3. Wang, Rui & Liao, Xin & Peng, Zuoxiang, 2017. "Second-order expansions for maxima of dynamic bivariate normal copulas," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 275-283.
    4. Das, Bikramjit & Engelke, Sebastian & Hashorva, Enkelejd, 2015. "Extremal behavior of squared Bessel processes attracted by the Brown–Resnick process," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 780-796.
    5. Hu, Shuang & Peng, Zuoxiang & Nadarajah, Saralees, 2022. "Tail dependence functions of the bivariate Hüsler–Reiss model," Statistics & Probability Letters, Elsevier, vol. 180(C).
    6. Enkelejd Hashorva & Zuoxiang Peng & Zhichao Weng, 2016. "Higher-order expansions of distributions of maxima in a Hüsler-Reiss model," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 181-196, March.
    7. Kiriliouk, Anna & Lee, Jeongjin & Segers, Johan, 2023. "X-Vine Models for Multivariate Extremes," LIDAM Discussion Papers ISBA 2023038, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
    9. Dominique Guegan & Bertrand Hassani, 2011. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Documents de travail du Centre d'Economie de la Sorbonne 11017r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2011.
    10. Michael Falk & René Michel, 2006. "Testing for Tail Independence in Extreme Value models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(2), pages 261-290, June.
    11. Ferreira, Helena, 2012. "Multivariate maxima of moving multivariate maxima," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1489-1496.
    12. Zofia Gródek-Szostak & Gabriela Malik & Danuta Kajrunajtys & Anna Szeląg-Sikora & Jakub Sikora & Maciej Kuboń & Marcin Niemiec & Joanna Kapusta-Duch, 2019. "Modeling the Dependency between Extreme Prices of Selected Agricultural Products on the Derivatives Market Using the Linkage Function," Sustainability, MDPI, vol. 11(15), pages 1-14, August.
    13. Dominique Guegan & Bertrand Hassani, 2011. "Multivariate VaRs for Operational Risk Capital Computation: a Vine Structure Approach," Documents de travail du Centre d'Economie de la Sorbonne 11017rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2012.
    14. Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Other publications TiSEM edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
    15. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    16. Molchanov, Ilya & Strokorb, Kirstin, 2016. "Max-stable random sup-measures with comonotonic tail dependence," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2835-2859.
    17. Michael Asamoah-Boaheng & Atinuke Adebanji & Morire Labeodan, 2016. "Some zero mean classification functions with unequal prior probabilities and non-normality," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 5(3), pages 2.
    18. Falk, Michael & Reiss, Rolf-Dieter, 2005. "On Pickands coordinates in arbitrary dimensions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 426-453, February.
    19. Mourahib, Anas & Kiriliouk, Anna & Segers, Johan, 2023. "Multivariate generalized Pareto distributions along extreme directions," LIDAM Discussion Papers ISBA 2023034, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Hurlimann, Werner, 2004. "Fitting bivariate cumulative returns with copulas," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 355-372, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:103:y:2015:i:c:p:62-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.