IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v25y2023i1d10.1007_s11009-023-09986-1.html
   My bibliography  Save this article

Tail Dependence Functions of Two Classes of Bivariate Skew Distributions

Author

Listed:
  • Xin Lao

    (University of Shanghai for Science and Technology)

  • Zuoxiang Peng

    (Southwest University)

  • Saralees Nadarajah

    (University of Manchester)

Abstract

The tail dependence function, one method of measuring the strength of extremal dependence between two or more random variables, is attracting an increasing attention in risk management. In this paper, we focus on the asymptotics of tail dependence functions of bivariate skew quasi elliptical and bivariate half-skew elliptical random vectors. The tail dependence functions of the two classes of bivariate skew random vectors are derived. Further, the decay rates of the tail dependence functions are derived if the distributional tail of the random radius satisfies certain second-order regularly varying conditions. Numerical analysis with several examples is given to illustrate the decay rates.

Suggested Citation

  • Xin Lao & Zuoxiang Peng & Saralees Nadarajah, 2023. "Tail Dependence Functions of Two Classes of Bivariate Skew Distributions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
  • Handle: RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-09986-1
    DOI: 10.1007/s11009-023-09986-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-023-09986-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-023-09986-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    2. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    3. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    4. Drees, Holger & Huang, Xin, 1998. "Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function," Journal of Multivariate Analysis, Elsevier, vol. 64(1), pages 25-47, January.
    5. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    6. Jiannan Ning & Wende Yi, 2016. "Tail dependence for skew Laplace distribution and skew Cauchy distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(17), pages 5224-5233, September.
    7. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    8. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    9. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    10. Thomas Fung & Eugene Seneta, 2010. "Tail dependence and skew distributions," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 327-333.
    11. Fung, Thomas & Seneta, Eugene, 2011. "The bivariate normal copula function is regularly varying," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1670-1676, November.
    12. Enkelejd Hashorva & Chengxiu Ling, 2016. "Maxima of skew elliptical triangular arrays," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(12), pages 3692-3705, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Shuang & Peng, Zuoxiang & Nadarajah, Saralees, 2022. "Tail dependence functions of the bivariate Hüsler–Reiss model," Statistics & Probability Letters, Elsevier, vol. 180(C).
    2. Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
    3. Fung, Thomas & Seneta, Eugene, 2014. "Convergence rate to a lower tail dependence coefficient of a skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 62-72.
    4. Fung, Thomas & Seneta, Eugene, 2016. "Tail asymptotics for the bivariate skew normal," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 129-138.
    5. Fung, Thomas & Seneta, Eugene, 2021. "Tail asymptotics for the bivariate equi-skew generalized hyperbolic distribution and its Variance-Gamma special case," Statistics & Probability Letters, Elsevier, vol. 178(C).
    6. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2017. "Multivariate generalized Pareto distributions: parametrizations, representations, and properties," LIDAM Discussion Papers ISBA 2017016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Rootzén, Holger & Segers, Johan & Wadsworth, Jennifer L., 2018. "Multivariate generalized Pareto distributions: Parametrizations, representations, and properties," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 117-131.
    9. Gissibl, Nadine & Klüppelberg, Claudia & Otto, Moritz, 2018. "Tail dependence of recursive max-linear models with regularly varying noise variables," Econometrics and Statistics, Elsevier, vol. 6(C), pages 149-167.
    10. Carsten Bormann & Julia Schaumburg & Melanie Schienle, 2016. "Beyond Dimension two: A Test for Higher-Order Tail Risk," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 552-580.
    11. Bücher Axel, 2014. "A note on nonparametric estimation of bivariate tail dependence," Statistics & Risk Modeling, De Gruyter, vol. 31(2), pages 151-162, June.
    12. Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Other publications TiSEM edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
    13. Bücher, Axel & Volgushev, Stanislav & Zou, Nan, 2019. "On second order conditions in the multivariate block maxima and peak over threshold method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 604-619.
    14. Joe, Harry & Sang, Peijun, 2016. "Multivariate models for dependent clusters of variables with conditional independence given aggregation variables," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 114-132.
    15. John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016. "An M-estimator of spatial tail dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
    16. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    17. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    18. Furman, Edward & Kuznetsov, Alexey & Su, Jianxi & Zitikis, Ričardas, 2016. "Tail dependence of the Gaussian copula revisited," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 97-103.
    19. Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Discussion Papers ISBA 2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:25:y:2023:i:1:d:10.1007_s11009-023-09986-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.