IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v166y2020ics0167715220301978.html
   My bibliography  Save this article

A note on distortion effects on the strength of bivariate copula tail dependence

Author

Listed:
  • Sepanski, Jungsywan H.

Abstract

This note presents relationships between a base copula and the copula induced by distortion of the base copula in the strength of tail dependence measured by tail dependence coefficients and tail orders. We derive a theorem that determines the relationships for distortion functions satisfying conditions related to regular variation. In addition to the well-known logarithmic, power and dual-power distortions, Lomax-distribution and Weibull-distribution based distortions are considered. The results can be readily applied to distortions constructed by compositions of the considered distortions.

Suggested Citation

  • Sepanski, Jungsywan H., 2020. "A note on distortion effects on the strength of bivariate copula tail dependence," Statistics & Probability Letters, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301978
    DOI: 10.1016/j.spl.2020.108894
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301978
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    2. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    3. Joe, Harry & Hu, Taizhong, 1996. "Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 240-265, May.
    4. Patricia Mariela Morillas, 2005. "A method to obtain new copulas from a given one," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(2), pages 169-184, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Shuang & Peng, Zuoxiang & Nadarajah, Saralees, 2022. "Tail dependence functions of the bivariate Hüsler–Reiss model," Statistics & Probability Letters, Elsevier, vol. 180(C).
    2. Fadal Abdullah-A Aldhufairi & Ranadeera G.M. Samanthi & Jungsywan H. Sepanski, 2020. "New Families of Bivariate Copulas via Unit Lomax Distortion," Risks, MDPI, vol. 8(4), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    2. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
    3. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    4. Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
    5. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    6. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    7. Farid El Ktaibi & Rachid Bentoumi & Mhamed Mesfioui, 2024. "On the Ratio-Type Family of Copulas," Mathematics, MDPI, vol. 12(11), pages 1-17, June.
    8. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    9. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    10. Hua, Lei & Joe, Harry, 2012. "Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 492-503.
    11. Moshe Kelner & Zinoviy Landsman & Udi E. Makov, 2021. "Compound Archimedean Copulas," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 126-126, June.
    12. Fabrizio Durante, 2009. "Construction of non-exchangeable bivariate distribution functions," Statistical Papers, Springer, vol. 50(2), pages 383-391, March.
    13. Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
    14. Hua, Lei & Polansky, Alan & Pramanik, Paramahansa, 2019. "Assessing bivariate tail non-exchangeable dependence," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    15. Mangold, Benedikt, 2017. "New concepts of symmetry for copulas," FAU Discussion Papers in Economics 06/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2017.
    16. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    17. J. Rosco & Harry Joe, 2013. "Measures of tail asymmetry for bivariate copulas," Statistical Papers, Springer, vol. 54(3), pages 709-726, August.
    18. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Copulas and related properties," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 109-121.
    19. Fadal A.A. Aldhufairi & Jungsywan H. Sepanski, 2020. "New families of bivariate copulas via unit weibull distortion," Journal of Statistical Distributions and Applications, Springer, vol. 7(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.