IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v164y2020ics0167715220300961.html
   My bibliography  Save this article

Some tests of independence based on maximum mean discrepancy and ranks of nearest neighbors

Author

Listed:
  • Roy, Angshuman
  • Ghosh, Anil K.

Abstract

We use the ideas of maximum mean discrepancy and ranks of nearest neighbors to propose some tests of independence among multiple random vectors of arbitrary dimensions. Numerical studies demonstrate that proposed tests can outperform the existing tests in various examples.

Suggested Citation

  • Roy, Angshuman & Ghosh, Anil K., 2020. "Some tests of independence based on maximum mean discrepancy and ranks of nearest neighbors," Statistics & Probability Letters, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:stapro:v:164:y:2020:i:c:s0167715220300961
    DOI: 10.1016/j.spl.2020.108793
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220300961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
    2. Niklas Pfister & Peter Bühlmann & Bernhard Schölkopf & Jonas Peters, 2018. "Kernel‐based tests for joint independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 5-31, January.
    3. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    4. Shubhadeep Chakraborty & Xianyang Zhang, 2019. "Distance Metrics for Measuring Joint Dependence with Application to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1638-1650, October.
    5. Taskinen, Sara & Oja, Hannu & Randles, Ronald H., 2005. "Multivariate Nonparametric Tests of Independence," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 916-925, September.
    6. Ruth Heller & Yair Heller & Malka Gorfine, 2013. "A consistent multivariate test of association based on ranks of distances," Biometrika, Biometrika Trust, vol. 100(2), pages 503-510.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehghan, Sakineh & Faridrohani, Mohammad Reza, 2024. "A data depth based nonparametric test of independence between two random vectors," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    2. Angshuman Roy & Anil K. Ghosh & Alok Goswami & C. A. Murthy, 2022. "Some New Copula Based Distribution-free Tests of Independence among Several Random Variables," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 556-596, August.
    3. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    4. Zhang, Wei & Gao, Wei & Ng, Hon Keung Tony, 2023. "Multivariate tests of independence based on a new class of measures of independence in Reproducing Kernel Hilbert Space," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    5. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Hongjian Shi & Mathias Drton & Marc Hallin & Fang Han, 2023. "Semiparametrically Efficient Tests of Multivariate Independence Using Center-Outward Quadrant, Spearman, and Kendall Statistics," Working Papers ECARES 2023-03, ULB -- Universite Libre de Bruxelles.
    7. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    8. Kalinke, Florian & Szabo, Zoltan, 2024. "The minimax rate of HSIC estimation for translation-invariant kernel," LSE Research Online Documents on Economics 122819, London School of Economics and Political Science, LSE Library.
    9. Hannu Oja & Davy Paindaveine & Sara Taskinen, 2009. "Parametric and nonparametric test for multivariate independence in IC models," Working Papers ECARES 2009_018, ULB -- Universite Libre de Bruxelles.
    10. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    11. Marc Hallin & Simos Meintanis & Klaus Nordhausen, 2024. "Consistent Distribution–Free Affine–Invariant Tests for the Validity of Independent Component Models," Working Papers ECARES 2024-04, ULB -- Universite Libre de Bruxelles.
    12. Beaulieu Guillaume Boglioni & de Micheaux Pierre Lafaye & Ouimet Frédéric, 2021. "Counterexamples to the classical central limit theorem for triplewise independent random variables having a common arbitrary margin," Dependence Modeling, De Gruyter, vol. 9(1), pages 424-438, January.
    13. Marc Hallin & Hongjian Shi & Mathias Drton & Fang Han, 2021. "Center-Outward Sign- and Rank-Based Quadrant, Spearman, and Kendall Tests for Multivariate Independence," Working Papers ECARES 2021-27, ULB -- Universite Libre de Bruxelles.
    14. Davy Paindaveine & Julien Remy & Thomas Verdebout, 2019. "Sign Tests for Weak Principal Directions," Working Papers ECARES 2019-01, ULB -- Universite Libre de Bruxelles.
    15. S Gorsky & L Ma, 2022. "Multi-scale Fisher’s independence test for multivariate dependence [A simple measure of conditional dependence]," Biometrika, Biometrika Trust, vol. 109(3), pages 569-587.
    16. Zhang, Qingyang, 2019. "Independence test for large sparse contingency tables based on distance correlation," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 17-22.
    17. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    18. Helmut Herwartz & Simone Maxand, 2020. "Nonparametric tests for independence: a review and comparative simulation study with an application to malnutrition data in India," Statistical Papers, Springer, vol. 61(5), pages 2175-2201, October.
    19. Rafael Carvalho Ceregatti & Rafael Izbicki & Luis Ernesto Bueno Salasar, 2021. "WIKS: a general Bayesian nonparametric index for quantifying differences between two populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 274-291, March.
    20. Chamakh, Linda & Szabo, Zoltan, 2021. "Kernel minimum divergence portfolios," LSE Research Online Documents on Economics 115723, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:164:y:2020:i:c:s0167715220300961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.