IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v195y2023ics0047259x2200135x.html
   My bibliography  Save this article

Multivariate tests of independence based on a new class of measures of independence in Reproducing Kernel Hilbert Space

Author

Listed:
  • Zhang, Wei
  • Gao, Wei
  • Ng, Hon Keung Tony

Abstract

In this paper, we propose a new class of independence measures based on the maximum mean discrepancy (MMD) in Reproducing Kernel Hilbert Space (RKHS). We use a novel way to build the independence measure by creating a metric on the space of all Borel probability measures. The proposed approach has several attractive properties including (i) no required assumptions about the data structure; (ii) insensitive to the dimension of the data; (iii) being more flexible than the Hilbert–Schmidt independence criterion (HSIC), which is the most popular independence measure based on RKHS. We show that the empirical estimator of the proposed independence measure possesses some desirable large sample properties regardless of the dimension of data. Based on the proposed independence measure, we develop two tests of independence in which the test statistics have simple forms and are easy to compute. The performance of the proposed tests of independence for high-dimensional data is evaluated through an extensive Monte Carlo simulation study.

Suggested Citation

  • Zhang, Wei & Gao, Wei & Ng, Hon Keung Tony, 2023. "Multivariate tests of independence based on a new class of measures of independence in Reproducing Kernel Hilbert Space," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:jmvana:v:195:y:2023:i:c:s0047259x2200135x
    DOI: 10.1016/j.jmva.2022.105144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X2200135X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niklas Pfister & Peter Bühlmann & Bernhard Schölkopf & Jonas Peters, 2018. "Kernel‐based tests for joint independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 5-31, January.
    2. Su, Liangjun & White, Halbert, 2007. "A consistent characteristic function-based test for conditional independence," Journal of Econometrics, Elsevier, vol. 141(2), pages 807-834, December.
    3. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
    4. Chenlu Ke & Xiangrong Yin, 2020. "Expected Conditional Characteristic Function-based Measures for Testing Independence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 985-996, April.
    5. Li, Bing & Wen, Songqiao & Zhu, Lixing, 2008. "On a Projective Resampling Method for Dimension Reduction With Multivariate Responses," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1177-1186.
    6. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    7. Taskinen, Sara & Oja, Hannu & Randles, Ronald H., 2005. "Multivariate Nonparametric Tests of Independence," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 916-925, September.
    8. Xianyan Chen & Qingcong Yuan & Xiangrong Yin, 2019. "Sufficient dimension reduction via distance covariance with multivariate responses," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(2), pages 268-288, April.
    9. Gabor J. Szekely & Maria L. Rizzo, 2005. "Hierarchical Clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 151-183, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy, Angshuman & Ghosh, Anil K., 2020. "Some tests of independence based on maximum mean discrepancy and ranks of nearest neighbors," Statistics & Probability Letters, Elsevier, vol. 164(C).
    2. Hongjian Shi & Mathias Drton & Marc Hallin & Fang Han, 2023. "Semiparametrically Efficient Tests of Multivariate Independence Using Center-Outward Quadrant, Spearman, and Kendall Statistics," Working Papers ECARES 2023-03, ULB -- Universite Libre de Bruxelles.
    3. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    4. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    5. Simos G. Meintanis & Joseph Ngatchou-Wandji & James Allison, 2018. "Testing for serial independence in vector autoregressive models," Statistical Papers, Springer, vol. 59(4), pages 1379-1410, December.
    6. Xu, Kai & Cheng, Qing, 2024. "Test of conditional independence in factor models via Hilbert–Schmidt independence criterion," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    7. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    8. Lu, Jun & Lin, Lu & Wang, WenWu, 2021. "Partition-based feature screening for categorical data via RKHS embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Chaudhuri, Arin & Hu, Wenhao, 2019. "A fast algorithm for computing distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 15-24.
    10. Hannu Oja & Davy Paindaveine & Sara Taskinen, 2009. "Parametric and nonparametric test for multivariate independence in IC models," Working Papers ECARES 2009_018, ULB -- Universite Libre de Bruxelles.
    11. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    12. Ke, Chenlu & Yang, Wei & Yuan, Qingcong & Li, Lu, 2023. "Partial sufficient variable screening with categorical controls," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    13. Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
    14. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Marc Hallin & Hongjian Shi & Mathias Drton & Fang Han, 2021. "Center-Outward Sign- and Rank-Based Quadrant, Spearman, and Kendall Tests for Multivariate Independence," Working Papers ECARES 2021-27, ULB -- Universite Libre de Bruxelles.
    16. Xin Dang & Dao Nguyen & Yixin Chen & Junying Zhang, 2021. "A new Gini correlation between quantitative and qualitative variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1314-1343, December.
    17. Davy Paindaveine & Julien Remy & Thomas Verdebout, 2019. "Sign Tests for Weak Principal Directions," Working Papers ECARES 2019-01, ULB -- Universite Libre de Bruxelles.
    18. Su, Liangjun & Zheng, Xin, 2017. "A martingale-difference-divergence-based test for specification," Economics Letters, Elsevier, vol. 156(C), pages 162-167.
    19. Zhou, Yeqing & Liu, Jingyuan & Zhu, Liping, 2020. "Test for conditional independence with application to conditional screening," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    20. Chen, Feifei & Meintanis, Simos G. & Zhu, Lixing, 2019. "On some characterizations and multidimensional criteria for testing homogeneity, symmetry and independence," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 125-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:195:y:2023:i:c:s0047259x2200135x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.