IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i528p1638-1650.html
   My bibliography  Save this article

Distance Metrics for Measuring Joint Dependence with Application to Causal Inference

Author

Listed:
  • Shubhadeep Chakraborty
  • Xianyang Zhang

Abstract

Many statistical applications require the quantification of joint dependence among more than two random vectors. In this work, we generalize the notion of distance covariance to quantify joint dependence among d≥2 random vectors. We introduce the high-order distance covariance to measure the so-called Lancaster interaction dependence. The joint distance covariance is then defined as a linear combination of pairwise distance covariances and their higher-order counterparts which together completely characterize mutual independence. We further introduce some related concepts including the distance cumulant, distance characteristic function, and rank-based distance covariance. Empirical estimators are constructed based on certain Euclidean distances between sample elements. We study the large-sample properties of the estimators and propose a bootstrap procedure to approximate their sampling distributions. The asymptotic validity of the bootstrap procedure is justified under both the null and alternative hypotheses. The new metrics are employed to perform model selection in causal inference, which is based on the joint independence testing of the residuals from the fitted structural equation models. The effectiveness of the method is illustrated via both simulated and real datasets. Supplementary materials for this article are available online.

Suggested Citation

  • Shubhadeep Chakraborty & Xianyang Zhang, 2019. "Distance Metrics for Measuring Joint Dependence with Application to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1638-1650, October.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1638-1650
    DOI: 10.1080/01621459.2018.1513364
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1513364
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1513364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuele Borgonovo & Elmar Plischke & Giovanni Rabitti, 2022. "Interactions and computer experiments," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1274-1303, September.
    2. Roy, Angshuman & Ghosh, Anil K., 2020. "Some tests of independence based on maximum mean discrepancy and ranks of nearest neighbors," Statistics & Probability Letters, Elsevier, vol. 164(C).
    3. Marc Hallin & Simos Meintanis & Klaus Nordhausen, 2024. "Consistent Distribution–Free Affine–Invariant Tests for the Validity of Independent Component Models," Working Papers ECARES 2024-04, ULB -- Universite Libre de Bruxelles.
    4. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Yaxue Yan & Weijuan Liang & Banban Wang & Xiaoling Zhang, 2023. "Spillover effect among independent carbon markets: evidence from China’s carbon markets," Economic Change and Restructuring, Springer, vol. 56(5), pages 3065-3093, October.
    6. Kalinke, Florian & Szabo, Zoltan, 2024. "The minimax rate of HSIC estimation for translation-invariant kernel," LSE Research Online Documents on Economics 122819, London School of Economics and Political Science, LSE Library.
    7. Beaulieu Guillaume Boglioni & de Micheaux Pierre Lafaye & Ouimet Frédéric, 2021. "Counterexamples to the classical central limit theorem for triplewise independent random variables having a common arbitrary margin," Dependence Modeling, De Gruyter, vol. 9(1), pages 424-438, January.
    8. Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:528:p:1638-1650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.