Independence test for large sparse contingency tables based on distance correlation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2018.12.010
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liping Zhu & Kai Xu & Runze Li & Wei Zhong, 2017. "Projection correlation between two random vectors," Biometrika, Biometrika Trust, vol. 104(4), pages 829-843.
- Niklas Pfister & Peter Bühlmann & Bernhard Schölkopf & Jonas Peters, 2018. "Kernel‐based tests for joint independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 5-31, January.
- Székely, Gábor J. & Rizzo, Maria L., 2013. "The distance correlation t-test of independence in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 193-213.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Jialin & Zhang, Zhiyi, 2024. "A normal test for independence via generalized mutual information," Statistics & Probability Letters, Elsevier, vol. 210(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lai, Tingyu & Zhang, Zhongzhan & Wang, Yafei & Kong, Linglong, 2021. "Testing independence of functional variables by angle covariance," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
- S Gorsky & L Ma, 2022. "Multi-scale Fisher’s independence test for multivariate dependence [A simple measure of conditional dependence]," Biometrika, Biometrika Trust, vol. 109(3), pages 569-587.
- Mirosław Krzyśko & Łukasz Smaga, 2024. "Application of distance standard deviation in functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 431-454, June.
- Hongjian Shi & Marc Hallin & Mathias Drton & Fang Han, 2020. "Rate-Optimality of Consistent Distribution-Free Tests of Independence Based on Center-Outward Ranks and Signs," Working Papers ECARES 2020-23, ULB -- Universite Libre de Bruxelles.
- Roy, Angshuman & Ghosh, Anil K., 2020. "Some tests of independence based on maximum mean discrepancy and ranks of nearest neighbors," Statistics & Probability Letters, Elsevier, vol. 164(C).
- Zhang, Qingyang, 2023. "On the asymptotic null distribution of the symmetrized Chatterjee’s correlation coefficient," Statistics & Probability Letters, Elsevier, vol. 194(C).
- Lai, Tingyu & Zhang, Zhongzhan & Wang, Yafei, 2021. "A kernel-based measure for conditional mean dependence," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Rauf Ahmad, M., 2019. "A significance test of the RV coefficient in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 116-130.
- Hyodo, Masashi & Nishiyama, Takahiro & Pavlenko, Tatjana, 2020. "Testing for independence of high-dimensional variables: ρV-coefficient based approach," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- J. A. Cuesta-Albertos & M. Febrero-Bande & M. Oviedo de la Fuente, 2017. "The $$\hbox {DD}^G$$ DD G -classifier in the functional setting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 119-142, March.
- Zhang, Wei & Gao, Wei & Ng, Hon Keung Tony, 2023. "Multivariate tests of independence based on a new class of measures of independence in Reproducing Kernel Hilbert Space," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
- Dueck, Johannes & Edelmann, Dominic & Richards, Donald, 2017. "Distance correlation coefficients for Lancaster distributions," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 19-39.
- Teran Hidalgo, Sebastian J. & Wu, Michael C. & Engel, Stephanie M. & Kosorok, Michael R., 2018. "Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 135-155.
- Manuel Febrero-Bande & Wenceslao González-Manteiga & Manuel Oviedo de la Fuente, 2019. "Variable selection in functional additive regression models," Computational Statistics, Springer, vol. 34(2), pages 469-487, June.
- Ricardo Fraiman & Leonardo Moreno & Sebastian Vallejo, 2017. "Some hypothesis tests based on random projection," Computational Statistics, Springer, vol. 32(3), pages 1165-1189, September.
- Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.
- Fan, Jinlin & Zhang, Yaowu & Zhu, Liping, 2022. "Independence tests in the presence of measurement errors: An invariance law," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Mirosław Krzyśko & Tomasz Górecki & Waldemar Wołyński & Waldemar Ratajczak, 2016. "An Extension of the Classical Distance Correlation Coefficient for Multivariate Functional Data with Applications," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(3), pages 449-466, September.
- Zhou, Yeqing & Liu, Jingyuan & Zhu, Liping, 2020. "Test for conditional independence with application to conditional screening," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- Rafael Carvalho Ceregatti & Rafael Izbicki & Luis Ernesto Bueno Salasar, 2021. "WIKS: a general Bayesian nonparametric index for quantifying differences between two populations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 274-291, March.
More about this item
Keywords
Sparse contingency table; Independence test; Distance correlation; Projection correlation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:148:y:2019:i:c:p:17-22. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.