IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v9y2021i1p424-438n20.html
   My bibliography  Save this article

Counterexamples to the classical central limit theorem for triplewise independent random variables having a common arbitrary margin

Author

Listed:
  • Beaulieu Guillaume Boglioni

    (UNSW Sydney, NSW 2052, Australia.)

  • de Micheaux Pierre Lafaye

    (UNSW Sydney, NSW 2052, Australia; Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, Montpellier, France; AMIS, Université Paul Valéry Montpellier 3, France)

  • Ouimet Frédéric

    (McGill University, Montreal, QC, Canada.)

Abstract

We present a general methodology to construct triplewise independent sequences of random variables having a common but arbitrary marginal distribution F (satisfying very mild conditions). For two specific sequences, we obtain in closed form the asymptotic distribution of the sample mean. It is non-Gaussian (and depends on the specific choice of F). This allows us to illustrate the extent of the ‘failure’ of the classical central limit theorem (CLT) under triplewise independence. Our methodology is simple and can also be used to create, for any integer K, new K-tuplewise independent sequences that are not mutually independent. For K [four.tf], it appears that the sequences created using our methodology do verify a CLT, and we explain heuristically why this is the case.

Suggested Citation

  • Beaulieu Guillaume Boglioni & de Micheaux Pierre Lafaye & Ouimet Frédéric, 2021. "Counterexamples to the classical central limit theorem for triplewise independent random variables having a common arbitrary margin," Dependence Modeling, De Gruyter, vol. 9(1), pages 424-438, January.
  • Handle: RePEc:vrs:demode:v:9:y:2021:i:1:p:424-438:n:20
    DOI: 10.1515/demo-2021-0120
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2021-0120
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2021-0120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin, Ze & Matteson, David S., 2018. "Generalizing distance covariance to measure and test multivariate mutual dependence via complete and incomplete V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 304-322.
    2. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    3. Shun Yao & Xianyang Zhang & Xiaofeng Shao, 2018. "Testing mutual independence in high dimension via distance covariance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 455-480, June.
    4. Robert E. Gaunt, 2019. "A note on the distribution of the product of zero‐mean correlated normal random variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 73(2), pages 176-179, May.
    5. Shubhadeep Chakraborty & Xianyang Zhang, 2019. "Distance Metrics for Measuring Joint Dependence with Application to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1638-1650, October.
    6. C Genest & J G Nešlehová & B Rémillard & O A Murphy, 2019. "Testing for independence in arbitrary distributions," Biometrika, Biometrika Trust, vol. 106(1), pages 47-68.
    7. Bradley, Richard C. & Pruss, Alexander R., 2009. "A strictly stationary, N-tuplewise independent counterexample to the Central Limit Theorem," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3300-3318, October.
    8. Kantorovitz, Miriam Ruth, 2007. "An example of a stationary, triplewise independent triangular array for which the CLT fails," Statistics & Probability Letters, Elsevier, vol. 77(5), pages 539-542, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Hallin & Simos Meintanis & Klaus Nordhausen, 2024. "Consistent Distribution–Free Affine–Invariant Tests for the Validity of Independent Component Models," Working Papers ECARES 2024-04, ULB -- Universite Libre de Bruxelles.
    2. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Nasri, Bouchra R., 2022. "Tests of serial dependence for multivariate time series with arbitrary distributions," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    4. Laverny, Oskar & Masiello, Esterina & Maume-Deschamps, Véronique & Rullière, Didier, 2021. "Dependence structure estimation using Copula Recursive Trees," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    5. Roy, Angshuman & Ghosh, Anil K., 2020. "Some tests of independence based on maximum mean discrepancy and ranks of nearest neighbors," Statistics & Probability Letters, Elsevier, vol. 164(C).
    6. Jin, Ze & Matteson, David S., 2018. "Generalizing distance covariance to measure and test multivariate mutual dependence via complete and incomplete V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 304-322.
    7. Saulius Jokubaitis & Remigijus Leipus, 2022. "Asymptotic Normality in Linear Regression with Approximately Sparse Structure," Mathematics, MDPI, vol. 10(10), pages 1-28, May.
    8. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    9. Chu, Ba, 2023. "A distance-based test of independence between two multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    10. Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.
    11. Mercadier, Cécile & Roustant, Olivier & Genest, Christian, 2022. "Linking the Hoeffding–Sobol and Möbius formulas through a decomposition of Kuo, Sloan, Wasilkowski, and Woźniakowski," Statistics & Probability Letters, Elsevier, vol. 185(C).
    12. Christian Gourieroux & Joann Jasiak, 2023. "Generalized Covariance Estimator," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1315-1327, October.
    13. Marrel, Amandine & Chabridon, Vincent, 2021. "Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    14. Antonio Seijas-Macias & Amílcar Oliveira & Teresa A. Oliveira, 2023. "A New R-Function to Estimate the PDF of the Product of Two Uncorrelated Normal Variables," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
    15. Fernández-Durán Juan José & Gregorio-Domínguez María Mercedes, 2023. "Test of bivariate independence based on angular probability integral transform with emphasis on circular-circular and circular-linear data," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-17, January.
    16. Tarik Bahraoui & Jean‐François Quessy, 2022. "Tests of multivariate copula exchangeability based on Lévy measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1215-1243, September.
    17. Xu, Kai & Cheng, Qing, 2024. "Test of conditional independence in factor models via Hilbert–Schmidt independence criterion," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    18. Matsui, Muneya & Mikosch, Thomas & Roozegar, Rasool & Tafakori, Laleh, 2022. "Distance covariance for random fields," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 280-322.
    19. Krzyśko Mirosław & Smaga Łukasz, 2020. "Measuring and Testing Mutual Dependence of Multivariate Functional Data," Statistics in Transition New Series, Polish Statistical Association, vol. 21(3), pages 21-37, September.
    20. Yongshuai Chen & Wenwen Guo & Hengjian Cui, 2024. "On the test of covariance between two high-dimensional random vectors," Statistical Papers, Springer, vol. 65(5), pages 2687-2717, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:9:y:2021:i:1:p:424-438:n:20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.