IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i7p904-927.html
   My bibliography  Save this article

A large deviation principle for 2D stochastic Navier-Stokes equation

Author

Listed:
  • Gourcy, Mathieu

Abstract

In this paper one specifies the ergodic behavior of the 2D-stochastic Navier-Stokes equation by giving a Large Deviation Principle for the occupation measure for large time. It describes the exact rate of exponential convergence. The considered random force is non-degenerate and compatible with the strong Feller property.

Suggested Citation

  • Gourcy, Mathieu, 2007. "A large deviation principle for 2D stochastic Navier-Stokes equation," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 904-927, July.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:7:p:904-927
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00161-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Liming, 2001. "Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 205-238, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ankit Kumar & Manil T. Mohan, 2023. "Large Deviation Principle for Occupation Measures of Stochastic Generalized Burgers–Huxley Equation," Journal of Theoretical Probability, Springer, vol. 36(1), pages 661-709, March.
    2. Mohan, Manil T., 2020. "Well posedness, large deviations and ergodicity of the stochastic 2D Oldroyd model of order one," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4513-4562.
    3. Hu, Shulan & Wang, Ran, 2020. "Asymptotics of stochastic Burgers equation with jumps," Statistics & Probability Letters, Elsevier, vol. 162(C).
    4. Wang, Ran & Xu, Lihu, 2018. "Asymptotics for stochastic reaction–diffusion equation driven by subordinate Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1772-1796.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi, Fubao, 2009. "Asymptotic properties of jump-diffusion processes with state-dependent switching," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2198-2221, July.
    2. Guillin, A. & Liptser, R., 2005. "MDP for integral functionals of fast and slow processes with averaging," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1187-1207, July.
    3. Bao, Jianhai & Wang, Jian, 2022. "Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 146(C), pages 114-142.
    4. Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
    5. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    6. Song, Renming & Xie, Longjie, 2020. "Well-posedness and long time behavior of singular Langevin stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1879-1896.
    7. Dexheimer, Niklas & Strauch, Claudia, 2022. "Estimating the characteristics of stochastic damping Hamiltonian systems from continuous observations," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 321-362.
    8. P. Cattiaux & José R. León & C. Prieur, 2015. "Recursive estimation for stochastic damping hamiltonian systems," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 401-424, September.
    9. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    10. Ankit Kumar & Manil T. Mohan, 2023. "Large Deviation Principle for Occupation Measures of Stochastic Generalized Burgers–Huxley Equation," Journal of Theoretical Probability, Springer, vol. 36(1), pages 661-709, March.
    11. Kulik, Alexey M., 2011. "Asymptotic and spectral properties of exponentially [phi]-ergodic Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1044-1075, May.
    12. Guillin, Arnaud, 2001. "Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 287-313, April.
    13. Bao, Jianhai & Fang, Rongjuan & Wang, Jian, 2024. "Exponential ergodicity of Lévy driven Langevin dynamics with singular potentials," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    14. Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
    15. Liming Wu, 2009. "A Φ-Entropy Contraction Inequality for Gaussian Vectors," Journal of Theoretical Probability, Springer, vol. 22(4), pages 983-991, December.
    16. Douc, Randal & Fort, Gersende & Guillin, Arnaud, 2009. "Subgeometric rates of convergence of f-ergodic strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 897-923, March.
    17. Xi, Fubao & Yin, G., 2010. "Asymptotic properties of nonlinear autoregressive Markov processes with state-dependent switching," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1378-1389, July.
    18. Xie, Longjie & Yang, Li, 2022. "The Smoluchowski–Kramers limits of stochastic differential equations with irregular coefficients," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 91-115.
    19. Kontoyiannis, I. & Meyn, S.P., 2017. "Approximating a diffusion by a finite-state hidden Markov model," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2482-2507.
    20. Anna Melnykova, 2020. "Parametric inference for hypoelliptic ergodic diffusions with full observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 595-635, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:7:p:904-927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.