IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i2p523-560.html
   My bibliography  Save this article

Large deviations for stochastic partial differential equations driven by a Poisson random measure

Author

Listed:
  • Budhiraja, Amarjit
  • Chen, Jiang
  • Dupuis, Paul

Abstract

Stochastic partial differential equations driven by Poisson random measures (PRMs) have been proposed as models for many different physical systems, where they are viewed as a refinement of a corresponding noiseless partial differential equation (PDE). A systematic framework for the study of probabilities of deviations of the stochastic PDE from the deterministic PDE is through the theory of large deviations. The goal of this work is to develop the large deviation theory for small Poisson noise perturbations of a general class of deterministic infinite dimensional models. Although the analogous questions for finite dimensional systems have been well studied, there are currently no general results in the infinite dimensional setting. This is in part due to the fact that in this setting solutions may have little spatial regularity, and thus classical approximation methods for large deviation analysis become intractable. The approach taken here, which is based on a variational representation for nonnegative functionals of general PRMs, reduces the proof of the large deviation principle to establishing basic qualitative properties for controlled analogues of the underlying stochastic system. As an illustration of the general theory, we consider a particular system that models the spread of a pollutant in a waterway.

Suggested Citation

  • Budhiraja, Amarjit & Chen, Jiang & Dupuis, Paul, 2013. "Large deviations for stochastic partial differential equations driven by a Poisson random measure," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 523-560.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:2:p:523-560
    DOI: 10.1016/j.spa.2012.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912002116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Acosta, A., 1994. "Large deviations for vector-valued Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 51(1), pages 75-115, June.
    2. Sritharan, S.S. & Sundar, P., 2006. "Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1636-1659, November.
    3. Duan, Jinqiao & Millet, Annie, 2009. "Large deviations for the Boussinesq equations under random influences," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2052-2081, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.
    2. Maroulas, Vasileios & Pan, Xiaoyang & Xiong, Jie, 2020. "Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 203-231.
    3. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    4. Deugoué, G. & Tachim Medjo, T., 2023. "Large deviation for a 3D globally modified Cahn–Hilliard–Navier–Stokes model under random influences," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 33-71.
    5. Ma, Xiaocui & Xi, Fubao, 2017. "Moderate deviations for neutral stochastic differential delay equations with jumps," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 97-107.
    6. Ganguly, Arnab, 2018. "Large deviation principle for stochastic integrals and stochastic differential equations driven by infinite-dimensional semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2179-2227.
    7. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.
    8. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    9. Hu, Shulan & Wang, Ran, 2020. "Asymptotics of stochastic Burgers equation with jumps," Statistics & Probability Letters, Elsevier, vol. 162(C).
    10. Xie, Longjie, 2017. "Singular SDEs with critical non-local and non-symmetric Lévy type generator," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3792-3824.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yujie & Huang, Jianhui & Maroulas, Vasileios, 2015. "Large deviations of mean-field stochastic differential equations with jumps," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 1-9.
    2. Salins, M., 2021. "Systems of small-noise stochastic reaction–diffusion equations satisfy a large deviations principle that is uniform over all initial data," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 159-194.
    3. Ganguly, Arnab, 2018. "Large deviation principle for stochastic integrals and stochastic differential equations driven by infinite-dimensional semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2179-2227.
    4. Liu, Wei & Röckner, Michael & Zhu, Xiang-Chan, 2013. "Large deviation principles for the stochastic quasi-geostrophic equations," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3299-3327.
    5. Maroulas, Vasileios & Xiong, Jie, 2013. "Large deviations for optimal filtering with fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2340-2352.
    6. Macci, Claudio & Pacchiarotti, Barbara, 2015. "Large deviations for a class of counting processes and some statistical applications," Statistics & Probability Letters, Elsevier, vol. 104(C), pages 36-48.
    7. Yongzhao Shao & Raúl Jiménez, 1998. "Entropy for Random Partitions and Its Applications," Journal of Theoretical Probability, Springer, vol. 11(2), pages 417-433, April.
    8. Hakima Bessaih & Annie Millet, 2022. "Speed of Convergence of Time Euler Schemes for a Stochastic 2D Boussinesq Model," Mathematics, MDPI, vol. 10(22), pages 1-39, November.
    9. Swie[combining cedilla]ch, Andrzej, 2009. "A PDE approach to large deviations in Hilbert spaces," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1081-1123, April.
    10. Dembo, Amir & Zajic, Tim, 1995. "Large deviations: From empirical mean and measure to partial sums process," Stochastic Processes and their Applications, Elsevier, vol. 57(2), pages 191-224, June.
    11. Jorge Garcia, 2008. "A Large Deviation Principle for Stochastic Integrals," Journal of Theoretical Probability, Springer, vol. 21(2), pages 476-501, June.
    12. Mohan, Manil T., 2020. "Well posedness, large deviations and ergodicity of the stochastic 2D Oldroyd model of order one," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4513-4562.
    13. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
    14. Ankit Kumar & Manil T. Mohan, 2023. "Large Deviation Principle for Occupation Measures of Stochastic Generalized Burgers–Huxley Equation," Journal of Theoretical Probability, Springer, vol. 36(1), pages 661-709, March.
    15. Sundar, P. & Yin, Hong, 2009. "Existence and uniqueness of solutions to the backward 2D stochastic Navier-Stokes equations," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1216-1234, April.
    16. Daras, Tryfon, 1998. "Trajectories of exchangeable sequences: Large and moderate deviations results," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 289-304, August.
    17. Wei Wang & Jianliang Zhai & Tusheng Zhang, 2022. "Stochastic Two-Dimensional Navier–Stokes Equations on Time-Dependent Domains," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2916-2939, December.
    18. Michel Mandjes, 2022. "Multivariate M/G/1 systems with coupled input and parallel service," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 309-311, April.
    19. Cipriano, Fernanda & Torrecilla, Iván, 2015. "Inviscid limit for 2D stochastic Navier–Stokes equations," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2405-2426.
    20. Xiuwei Yin & Jiang-Lun Wu & Guangjun Shen, 2022. "Well-Posedness for Stochastic Fractional Navier–Stokes Equation in the Critical Fourier–Besov Space," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2940-2959, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:2:p:523-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.