IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v126y2017icp97-107.html
   My bibliography  Save this article

Moderate deviations for neutral stochastic differential delay equations with jumps

Author

Listed:
  • Ma, Xiaocui
  • Xi, Fubao

Abstract

A moderate deviation principle for neutral stochastic differential delay equations driven by Poisson random measure is established. The weak convergence method introduced by Budhiraja et al. (2016) plays a key role.

Suggested Citation

  • Ma, Xiaocui & Xi, Fubao, 2017. "Moderate deviations for neutral stochastic differential delay equations with jumps," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 97-107.
  • Handle: RePEc:eee:stapro:v:126:y:2017:i:c:p:97-107
    DOI: 10.1016/j.spl.2017.02.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217300901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.02.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    2. Budhiraja, Amarjit & Chen, Jiang & Dupuis, Paul, 2013. "Large deviations for stochastic partial differential equations driven by a Poisson random measure," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 523-560.
    3. Gao, Fu-Qing, 1996. "Moderate deviations for martingales and mixing random processes," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 263-275, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    2. Maroulas, Vasileios & Pan, Xiaoyang & Xiong, Jie, 2020. "Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 203-231.
    3. I. G. Grama & E. Haeusler, 2006. "An Asymptotic Expansion for Probabilities of Moderate Deviations for Multivariate Martingales," Journal of Theoretical Probability, Springer, vol. 19(1), pages 1-44, January.
    4. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    5. Reiichiro Kawai, 2008. "Adaptive Monte Carlo Variance Reduction for Lévy Processes with Two-Time-Scale Stochastic Approximation," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 199-223, June.
    6. Hejin Wang & Zhan Zheng, 2024. "Randomly Shifted Lattice Rules with Importance Sampling and Applications," Mathematics, MDPI, vol. 12(5), pages 1-20, February.
    7. Xueping Wu & Jin Zhang, 1999. "Options on the minimum or the maximum of two average prices," Review of Derivatives Research, Springer, vol. 3(2), pages 183-204, May.
    8. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    9. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    10. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    11. Lapeyre Bernard & Lelong Jérôme, 2011. "A framework for adaptive Monte Carlo procedures," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 77-98, January.
    12. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    13. Bernard Lapeyre & J'er^ome Lelong, 2010. "A framework for adaptive Monte-Carlo procedures," Papers 1001.3551, arXiv.org, revised Jul 2010.
    14. Adam W. Kolkiewicz, 2016. "Efficient Hedging Of Path–Dependent Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-27, August.
    15. dos Reis, Gonçalo & Smith, Greig & Tankov, Peter, 2023. "Importance sampling for McKean-Vlasov SDEs," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    16. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    17. Pierre Etore & Gersende Fort & Benjamin Jourdain & Eric Moulines, 2011. "On adaptive stratification," Annals of Operations Research, Springer, vol. 189(1), pages 127-154, September.
    18. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    19. Ulrich Horst & Jan Wezelburger, 2006. "Non-ergodic Behavior in a Financial Market with Interacting Investors," 2006 Meeting Papers 229, Society for Economic Dynamics.
    20. Alaya, Mohamed Ben & Hajji, Kaouther & Kebaier, Ahmed, 2016. "Importance sampling and statistical Romberg method for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1901-1931.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:126:y:2017:i:c:p:97-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.