On a loss-based prior for the number of components in mixture models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2019.108656
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cristiano Villa & Stephen Walker, 2015. "An Objective Bayesian Criterion to Determine Model Prior Probabilities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 947-966, December.
- repec:dau:papers:123456789/6069 is not listed on IDEAS
- Ghosal,Subhashis & van der Vaart,Aad, 2017. "Fundamentals of Nonparametric Bayesian Inference," Cambridge Books, Cambridge University Press, number 9780521878265, October.
- Jeffrey W. Miller & Matthew T. Harrison, 2018. "Mixture Models With a Prior on the Number of Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 340-356, January.
- Grazian, Clara & Robert, Christian P., 2018. "Jeffreys priors for mixture estimation: Properties and alternatives," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 149-163.
- Juárez, Miguel A. & Steel, Mark F. J., 2010. "Model-Based Clustering of Non-Gaussian Panel Data Based on Skew-t Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 52-66.
- Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
- Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
- repec:dau:papers:123456789/4648 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sylvia Frühwirth-Schnatter & Gertraud Malsiner-Walli, 2019. "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 33-64, March.
- Creal, Drew & Kim, Jaeho, 2024. "Bayesian estimation of cluster covariance matrices of unknown form," Journal of Econometrics, Elsevier, vol. 241(1).
- You, Na & Dai, Hongsheng & Wang, Xueqin & Yu, Qingyun, 2024. "Sequential estimation for mixture of regression models for heterogeneous population," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Walker, Stephen G., 2023. "Comparing weak and strong convergence of density functions," Statistics & Probability Letters, Elsevier, vol. 200(C).
- Im, Yunju & Tan, Aixin, 2021. "Bayesian subgroup analysis in regression using mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
- Gustavo Alexis Sabillón & Luiz Gabriel Fernandes Cotrim & Daiane Aparecida Zuanetti, 2023. "A data-driven reversible jump for estimating a finite mixture of regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 350-369, March.
- Aßmann, Christian & Boysen-Hogrefe, Jens, 2011. "A Bayesian approach to model-based clustering for binary panel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 261-279, January.
- Miller Jeffrey W., 2023. "Consistency of mixture models with a prior on the number of components," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-9, January.
- Ryan Martin, 2021. "A Survey of Nonparametric Mixing Density Estimation via the Predictive Recursion Algorithm," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 97-121, May.
- Han, Ningren & Ram, Rajeev J., 2020. "Bayesian modeling and computation for analyte quantification in complex mixtures using Raman spectroscopy," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
- De Blasi, Pierpaolo & Martínez, Asael Fabian & Mena, Ramsés H. & Prünster, Igor, 2020. "On the inferential implications of decreasing weight structures in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
- Bettina Grün & Gertraud Malsiner-Walli & Sylvia Frühwirth-Schnatter, 2022. "How many data clusters are in the Galaxy data set?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 325-349, June.
- Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
- Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023.
"Forecasting with a panel Tobit model,"
Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2019. "Forecasting with a Panel Tobit Model," CAEPR Working Papers 2019-005, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2019. "Forecasting with a Panel Tobit Model," NBER Working Papers 26569, National Bureau of Economic Research, Inc.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2021. "Forecasting with a Panel Tobit Model," Papers 2110.14117, arXiv.org, revised Jul 2022.
- Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
- N. T. Longford & Pierpaolo D'Urso, 2011. "Mixture models with an improper component," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2511-2521, January.
- Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
- Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014.
"Bayesian exploratory factor analysis,"
Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
- Gabriella Conti & Sylvia Fruehwirth-Schnatter & James J. Heckman & Remi Piatek, 2014. "Bayesian Exploratory Factor Analysis," Working Papers 2014-014, Human Capital and Economic Opportunity Working Group.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James J. Heckman & Rémi Piatek, 2014. "Bayesian Exploratory Factor Analysis," NRN working papers 2014-08, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James Heckman & Rémi Piatek, 2014. "Bayesian exploratory factor analysis," CeMMAP working papers CWP30/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James Heckman & Rémi Piatek, 2014. "Bayesian exploratory factor analysis," CeMMAP working papers 30/14, Institute for Fiscal Studies.
- Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian Exploratory Factor Analysis," IZA Discussion Papers 8338, Institute of Labor Economics (IZA).
- Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
More about this item
Keywords
Mixture models; Bayesian inference; Default priors; Loss-based priors; Clustering;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:158:y:2020:i:c:s0167715219303025. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.