Consistency of mixture models with a prior on the number of components
Author
Abstract
Suggested Citation
DOI: 10.1515/demo-2022-0150
Download full text from publisher
References listed on IDEAS
- Theofanis Sapatinas, 1995. "Identifiability of mixtures of power-series distributions and related characterizations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 447-459, September.
- Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
- Ghosal,Subhashis & van der Vaart,Aad, 2017. "Fundamentals of Nonparametric Bayesian Inference," Cambridge Books, Cambridge University Press, number 9780521878265, September.
- Jeffrey W. Miller & Matthew T. Harrison, 2018. "Mixture Models With a Prior on the Number of Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 340-356, January.
- Weining Shen & Surya T. Tokdar & Subhashis Ghosal, 2013. "Adaptive Bayesian multivariate density estimation with Dirichlet mixtures," Biometrika, Biometrika Trust, vol. 100(3), pages 623-640.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023.
"Forecasting with a panel Tobit model,"
Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2019. "Forecasting with a Panel Tobit Model," NBER Working Papers 26569, National Bureau of Economic Research, Inc.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2019. "Forecasting with a Panel Tobit Model," CAEPR Working Papers 2019-005, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2021. "Forecasting with a Panel Tobit Model," Papers 2110.14117, arXiv.org, revised Jul 2022.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
- Minerva Mukhopadhyay & Didong Li & David B. Dunson, 2020. "Estimating densities with non‐linear support by using Fisher–Gaussian kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1249-1271, December.
- Guanyu Hu & Yishu Xue & Zhihua Ma, 2020. "Bayesian Clustered Coefficients Regression with Auxiliary Covariates Assistant Random Effects," Papers 2004.12022, arXiv.org, revised Aug 2021.
- Lawless Caroline & Arbel Julyan, 2019. "A simple proof of Pitman–Yor’s Chinese restaurant process from its stick-breaking representation," Dependence Modeling, De Gruyter, vol. 7(1), pages 45-52, March.
- Grazian, Clara & Villa, Cristiano & Liseo, Brunero, 2020. "On a loss-based prior for the number of components in mixture models," Statistics & Probability Letters, Elsevier, vol. 158(C).
- Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
- José J. Quinlan & Fernando A. Quintana & Garritt L. Page, 2021. "On a class of repulsive mixture models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 445-461, June.
- Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
- A Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Osman Shami & Alexander Teytelboym, 2024.
"An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan,"
Journal of the European Economic Association, European Economic Association, vol. 22(2), pages 781-836.
- Quinn, Simon & Caria, Stefano & Gordon, Grant & Kasy, Maximilian & Shami, Soha & Teytelboym, Alexander, 2020. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," CEPR Discussion Papers 15359, C.E.P.R. Discussion Papers.
- Caria, Stefano & Gordon, Grant & Kasy, Maximilian & Quinn, Simon & Shami, Soha & Teytelboym, Alexander, 2021. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," CAGE Online Working Paper Series 547, Competitive Advantage in the Global Economy (CAGE).
- Caria, Stefano & Gordon, Grant & Kasy, Maximilian & Quinn, Simon & Shami, Soha & Teytelboym, Alexander, 2021. "An Adaptive Targeted Field Experiment : Job Search Assistance for Refugees in Jordan," The Warwick Economics Research Paper Series (TWERPS) 1335, University of Warwick, Department of Economics.
- A. Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Shami & Alexander Teytelboym, 2020. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," CSAE Working Paper Series 2020-20, Centre for the Study of African Economies, University of Oxford.
- Stefano Caria & Grant Gordon & Maximilian Kasy & Simon Quinn & Soha Shami & Alexander Teytelboym, 2020. "An Adaptive Targeted Field Experiment: Job Search Assistance for Refugees in Jordan," CESifo Working Paper Series 8535, CESifo.
- Burda, Martin & Harding, Matthew & Hausman, Jerry, 2012. "A Poisson mixture model of discrete choice," Journal of Econometrics, Elsevier, vol. 166(2), pages 184-203.
- Martin Burda & Remi Daviet, 2023.
"Hamiltonian sequential Monte Carlo with application to consumer choice behavior,"
Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 54-77, January.
- Martin Burda & Remi Daviet, 2018. "Hamiltonian Sequential Monte Carlo with Application to Consumer Choice Behavior," Working Papers tecipa-618, University of Toronto, Department of Economics.
- Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
- Ludkin, Matthew, 2020. "Inference for a generalised stochastic block model with unknown number of blocks and non-conjugate edge models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- repec:cte:wsrepe:ws1504 is not listed on IDEAS
- Agustín G. Nogales, 2022. "On Consistency of the Bayes Estimator of the Density," Mathematics, MDPI, vol. 10(4), pages 1-6, February.
- Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
- Griffin, J. E. & Steel, M. F. J., 2004.
"Semiparametric Bayesian inference for stochastic frontier models,"
Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
- Jim E. Griffin & Mark F.J. Steel, 2002. "Semiparametric Bayesian Inference for Stochastic Frontier Models," Econometrics 0209001, University Library of Munich, Germany, revised 18 Sep 2002.
- Inés M. Varas & Jorge González & Fernando A. Quintana, 2020. "A Bayesian Nonparametric Latent Approach for Score Distributions in Test Equating," Journal of Educational and Behavioral Statistics, , vol. 45(6), pages 639-666, December.
- A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
- Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
More about this item
Keywords
asymptotics; Bayesian statistics; clustering; nonparametric inference;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:11:y:2023:i:1:p:9:n:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.