Jeffreys priors for mixture estimation: Properties and alternatives
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2017.12.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
- M. Ghosh & B. Carlin & M. Srivastava, 1995. "Probability matching priors for linear calibration," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(2), pages 333-357, December.
- Lennart Hoogerheide & Herman K. van Dijk, 2008. "Possibly Ill-behaved Posteriors in Econometric Models," Tinbergen Institute Discussion Papers 08-036/4, Tinbergen Institute, revised 18 Apr 2008.
- L. Wasserman, 2000. "Asymptotic inference for mixture models by using data‐dependent priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 159-180.
- repec:dau:papers:123456789/4648 is not listed on IDEAS
- Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Grazian, Clara & Villa, Cristiano & Liseo, Brunero, 2020. "On a loss-based prior for the number of components in mixture models," Statistics & Probability Letters, Elsevier, vol. 158(C).
- Gustavo Alexis Sabillón & Luiz Gabriel Fernandes Cotrim & Daiane Aparecida Zuanetti, 2023. "A data-driven reversible jump for estimating a finite mixture of regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 350-369, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ardia, David & Hoogerheide, Lennart F., 2010.
"Efficient Bayesian estimation and combination of GARCH-type models,"
MPRA Paper
22919, University Library of Munich, Germany.
- David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
- Jiang, Yu, 2020. "Identification of business cycles and the Great Moderation in the post-war U.S. economy," Economics Letters, Elsevier, vol. 190(C).
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2009.
"Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i03).
- David Ardia & Lennart F. Hoogerheide & Herman K. van Dijk, 2008. "Adaptive Mixture of Student-t distributions as a Flexible Candidate Distribution for Efficient Simulation: the R Package AdMit," Tinbergen Institute Discussion Papers 08-062/4, Tinbergen Institute, revised 15 Dec 2008.
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2009.
"Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i03).
- David Ardia & Lennart F. Hoogerheide & Herman K. van Dijk, 2008. "Adaptive Mixture of Student-t distributions as a Flexible Candidate Distribution for Efficient Simulation: the R Package AdMit," Tinbergen Institute Discussion Papers 08-062/4, Tinbergen Institute, revised 15 Dec 2008.
- Ardia, David & Hoogerheide, Lennart F. & van Dijk, Herman K., 2008. "Adaptive mixture of Student-t distributions as a flexible candidate distribution for efficient simulation: the R package AdMit," DQE Working Papers 9, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 07 Jan 2009.
- Aßmann, Christian & Boysen-Hogrefe, Jens, 2011. "A Bayesian approach to model-based clustering for binary panel probit models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 261-279, January.
- Reichl Johannes, 2020. "Estimating marginal likelihoods from the posterior draws through a geometric identity," Monte Carlo Methods and Applications, De Gruyter, vol. 26(3), pages 205-221, September.
- repec:jss:jstsof:29:i03 is not listed on IDEAS
- Yu Jiang & Xianming Fang, 2014. "Identify regimes in post-war US GDP growth," Applied Economics Letters, Taylor & Francis Journals, vol. 21(6), pages 397-401, April.
- Jensen, Mark J. & Maheu, John M., 2010.
"Bayesian semiparametric stochastic volatility modeling,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
- Mark J Jensen & John M Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," Working Papers tecipa-314, University of Toronto, Department of Economics.
- Mark J. Jensen & John M. Maheu, 2009. "Bayesian Semiparametric Stochastic Volatility Modeling," Working Paper series 23_09, Rimini Centre for Economic Analysis.
- Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
- Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016.
"Efficient Gibbs sampling for Markov switching GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
- Monica Billio & Roberto Casarin & Anthony Osuntuyi, 2012. "Efficient Gibbs Sampling for Markov Switching GARCH Models," Working Papers 2012:35, Department of Economics, University of Venice "Ca' Foscari".
- Doornik, Jurgen A. & Ooms, Marius, 2008.
"Multimodality in GARCH regression models,"
International Journal of Forecasting, Elsevier, vol. 24(3), pages 432-448.
- Jurgen A. Doornik & Marius Ooms, 2003. "Multimodality in the GARCH Regression Model," Economics Papers 2003-W20, Economics Group, Nuffield College, University of Oxford.
- Manuel Arellano & Stéphane Bonhomme, 2009.
"Robust Priors in Nonlinear Panel Data Models,"
Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
- Manuel Arellano & Stéphane Bonhomme, 2006. "Robust Priors in Nonlinear Panel Data Models," Working Papers wp2006_0614, CEMFI.
- Manuel Arellano & Stéphane Bonhomme, 2007. "Robust priors in nonlinear panel data models," CeMMAP working papers CWP07/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
- Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
- Arman Oganisian & Nandita Mitra & Jason A. Roy, 2021. "A Bayesian nonparametric model for zero‐inflated outcomes: Prediction, clustering, and causal estimation," Biometrics, The International Biometric Society, vol. 77(1), pages 125-135, March.
- Jia Liu & John M. Maheu & Yong Song, 2024.
"Identification and forecasting of bull and bear markets using multivariate returns,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
- Liu, Jia & Maheu, John M & Song, Yong, 2023. "Identification and Forecasting of Bull and Bear Markets using Multivariate Returns," MPRA Paper 119515, University Library of Munich, Germany.
- Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
- Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
- Rufo, M.J. & Pérez, C.J. & MartÃn, J., 2009. "Local parametric sensitivity for mixture models of lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1238-1244.
- Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
- Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
More about this item
Keywords
Noninformative prior; Mixture of distributions; Bayesian analysis; Improper prior;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:121:y:2018:i:c:p:149-163. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.