IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v178y2024ics0304414924001686.html
   My bibliography  Save this article

Empirical optimal transport under estimated costs: Distributional limits and statistical applications

Author

Listed:
  • Hundrieser, Shayan
  • Mordant, Gilles
  • Weitkamp, Christoph A.
  • Munk, Axel

Abstract

Optimal transport (OT) based data analysis is often faced with the issue that the underlying cost function is (partially) unknown. This is addressed in this paper with the derivation of distributional limits for the empirical OT value when the cost function and the measures are estimated from data. For statistical inference purposes, but also from the viewpoint of a stability analysis, understanding the fluctuation of such quantities is paramount. Our results find direct application in the problem of goodness-of-fit testing for group families, in machine learning applications where invariant transport costs arise, in the problem of estimating the distance between mixtures of distributions, and for the analysis of empirical sliced OT quantities.

Suggested Citation

  • Hundrieser, Shayan & Mordant, Gilles & Weitkamp, Christoph A. & Munk, Axel, 2024. "Empirical optimal transport under estimated costs: Distributional limits and statistical applications," Stochastic Processes and their Applications, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:spapps:v:178:y:2024:i:c:s0304414924001686
    DOI: 10.1016/j.spa.2024.104462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924001686
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Hallin & Gilles Mordant & Johan Segers, 2020. "Multivariate Goodness-of-Fit Tests Based on Wasserstein Distance," Working Papers ECARES 2020-06, ULB -- Universite Libre de Bruxelles.
    2. Mordant, Gilles & Segers, Johan, 2022. "Measuring dependence between random vectors via optimal transport," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Steven N. Evans & Frederick A. Matsen, 2012. "The phylogenetic Kantorovich–Rubinstein metric for environmental sequence samples," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 569-592, June.
    4. Axel Bücher & Ivan Kojadinovic, 2019. "A Note on Conditional Versus Joint Unconditional Weak Convergence in Bootstrap Consistency Results," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1145-1165, September.
    5. Valentin Hartmann & Dominic Schuhmacher, 2020. "Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 133-163, August.
    6. Marcel Klatt & Axel Munk & Yoav Zemel, 2022. "Limit laws for empirical optimal solutions in random linear programs," Annals of Operations Research, Springer, vol. 315(1), pages 251-278, August.
    7. Axel Munk & Claudia Czado, 1998. "Nonparametric validation of similar distributions and assessment of goodness of fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 223-241.
    8. Zheng Fang & Andres Santos, 2019. "Inference on Directionally Differentiable Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(1), pages 377-412.
    9. Christoph Alexander Weitkamp & Katharina Proksch & Carla Tameling & Axel Munk, 2024. "Distribution of Distances based Object Matching: Asymptotic Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 538-551, January.
    10. Beran, R.J. & Le Cam, L. & Millar, P.W., 1987. "Convergence of stochastic empirical measures," Journal of Multivariate Analysis, Elsevier, vol. 23(1), pages 159-168, October.
    11. Max Sommerfeld & Axel Munk, 2018. "Inference for empirical Wasserstein distances on finite spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 219-238, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. del Barrio, Eustasio & Gordaliza, Paula & Lescornel, Hélène & Loubes, Jean-Michel, 2019. "Central limit theorem and bootstrap procedure for Wasserstein’s variations with an application to structural relationships between distributions," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 341-362.
    2. Cheng, Guanghui & Xiong, Qiang & Lin, Ruitao, 2024. "Online bootstrap inference for the geometric median," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    3. Mika Meitz, 2024. "Statistical inference for generative adversarial networks and other minimax problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1323-1356, September.
    4. Solveig Flaig & Gero Junike, 2022. "Scenario Generation for Market Risk Models Using Generative Neural Networks," Risks, MDPI, vol. 10(11), pages 1-28, October.
    5. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    6. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
    7. Fraiman, Ricardo & Moreno, Leonardo & Ransford, Thomas, 2023. "A Cramér–Wold theorem for elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    8. Lee, Kyungho & Linton, Oliver & Whang, Yoon-Jae, 2023. "Testing for time stochastic dominance," Journal of Econometrics, Elsevier, vol. 235(2), pages 352-371.
    9. Caravello, Tomas E. & Psaradakis, Zacharias & Sola, Martin, 2023. "Rational bubbles: Too many to be true?," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    10. Nasri, Bouchra R., 2022. "Tests of serial dependence for multivariate time series with arbitrary distributions," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    11. Axel Bücher & Ivan Kojadinovic, 2019. "A Note on Conditional Versus Joint Unconditional Weak Convergence in Bootstrap Consistency Results," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1145-1165, September.
    12. Kai Feng & Han Hong, 2024. "Statistical Inference of Optimal Allocations I: Regularities and their Implications," Papers 2403.18248, arXiv.org, revised Apr 2024.
    13. Sungwon Lee, 2024. "Partial identification and inference for conditional distributions of treatment effects," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 107-127, January.
    14. Frederick A Matsen IV & Steven N Evans, 2013. "Edge Principal Components and Squash Clustering: Using the Special Structure of Phylogenetic Placement Data for Sample Comparison," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-15, March.
    15. Firpo, Sergio & Galvao, Antonio F. & Parker, Thomas, 2023. "Uniform inference for value functions," Journal of Econometrics, Elsevier, vol. 235(2), pages 1680-1699.
    16. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    17. Rippl, Thomas & Munk, Axel & Sturm, Anja, 2016. "Limit laws of the empirical Wasserstein distance: Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 90-109.
    18. Kitagawa, Toru & Montiel Olea, José Luis & Payne, Jonathan & Velez, Amilcar, 2020. "Posterior distribution of nondifferentiable functions," Journal of Econometrics, Elsevier, vol. 217(1), pages 161-175.
    19. Lando, Tommaso, 2024. "Nonparametric inference for NBUE distributions based on the TTT transform," Statistics & Probability Letters, Elsevier, vol. 212(C).
    20. Bastian, P. & Dette, H. & Koletzko, L., 2024. "Testing equivalence of multinomial distributions — A constrained bootstrap approach," Statistics & Probability Letters, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:178:y:2024:i:c:s0304414924001686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.