IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i3ne2664.html
   My bibliography  Save this article

Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models

Author

Listed:
  • Hyunju Son
  • Youyi Fong

Abstract

Two‐phase polynomial regression models (Robison, 1964; Fuller, 1969; Gallant and Fuller, 1973; Zhan et al., 1996) are widely used in ecology, public health, and other applied fields to model nonlinear relationships. These models are characterized by the presence of threshold parameters, across which the mean functions are allowed to change. That the threshold is a parameter of the model to be estimated from the data is an essential feature of two‐phase models. It distinguishes them, and more generally, multiphase models, from the spline models and has profound implications for both computation and inference for the models. Estimation of two‐phase polynomial regression models is a nonconvex, nonsmooth optimization problem. Grid search provides high‐quality solutions to the estimation problem, but is very slow when performed by brute force. Building upon our previous work on piecewise linear two‐phase regression models estimation, we develop fast grid search algorithms for two‐phase polynomial regression models and demonstrate their performance. Furthermore, we develop bootstrap‐based pointwise and simultaneous confidence bands for mean functions. Monte Carlo studies are conducted to demonstrate the computational and statistical properties of the proposed methods. Three real datasets are used to help illustrate the application of two‐phase models, with special attention on model choice.

Suggested Citation

  • Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:3:n:e2664
    DOI: 10.1002/env.2664
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2664
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
    2. Iranpanah, N. & Mohammadzadeh, M. & Taylor, C.C., 2011. "A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 578-587, January.
    3. Fuller, Wayne A., 1969. "Grafted Polynomials As Approximating Functions," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 13(1), pages 1-12, June.
    4. Bisaglia, Luisa & Procidano, Isabella, 2002. "On the power of the Augmented Dickey-Fuller test against fractional alternatives using bootstrap," Economics Letters, Elsevier, vol. 77(3), pages 343-347, November.
    5. Wayne A. Fuller, 1969. "Grafted Polynomials As Approximating Functions," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 13(1), pages 35-46, June.
    6. Bruce E. Hansen, 2017. "Regression Kink With an Unknown Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 228-240, April.
    7. Hong, Han & Li, Jessie, 2018. "The numerical delta method," Journal of Econometrics, Elsevier, vol. 206(2), pages 379-394.
    8. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
    9. Maik Döring & Uwe Jensen, 2015. "Smooth change point estimation in regression models with random design," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 595-619, June.
    10. Zheng Fang & Andres Santos, 2019. "Inference on Directionally Differentiable Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(1), pages 377-412.
    11. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih‐Hao Chang & Kam‐Fai Wong & Wei‐Yee Lim, 2023. "Threshold estimation for continuous three‐phase polynomial regression models with constant mean in the middle regime," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(1), pages 4-47, February.
    2. Sofiane Aboura, 2022. "A note on the Bitcoin and Fed Funds rate," Empirical Economics, Springer, vol. 63(5), pages 2577-2603, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    2. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    3. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    4. Zi Ye & Giles Hooker & Stephen P. Ellner, 2021. "Generalized Single Index Models and Jensen Effects on Reproduction and Survival," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 492-512, September.
    5. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    7. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    8. Wei Huang & Oliver Linton & Zheng Zhang, 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Papers 2102.08063, arXiv.org, revised Sep 2021.
    9. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    10. Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    11. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
    12. Wahba, Jackline & Schluter, Christian, 2009. "Illegal migration, wages and remittances- semi-parametric estimation of illegality effects," Discussion Paper Series In Economics And Econometrics 913, Economics Division, School of Social Sciences, University of Southampton.
    13. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Schmidt, Rouven & Kneib, Thomas, 2023. "Multivariate distributional stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    15. Clark, Andrew E. & Etilé, Fabrice, 2011. "Happy house: Spousal weight and individual well-being," Journal of Health Economics, Elsevier, vol. 30(5), pages 1124-1136.
    16. Hannes Matuschek & Reinhold Kliegl & Matthias Holschneider, 2015. "Smoothing Spline ANOVA Decomposition of Arbitrary Splines: An Application to Eye Movements in Reading," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    17. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
    18. Michaelides, Michael & Spanos, Aris, 2020. "On modeling heterogeneity in linear models using trend polynomials," Economic Modelling, Elsevier, vol. 85(C), pages 74-86.
    19. Lu, Qiang (Steven) & Yang, Yupin & Yuksel, Ulku, 2015. "The impact of a new online channel: An empirical study," Annals of Tourism Research, Elsevier, vol. 54(C), pages 136-155.
    20. Nadja Klein & Thomas Kneib & Giampiero Marra & Rosalba Radice & Slawa Rokicki & Mark E. McGovern, 2018. "Mixed Binary-Continuous Copula Regression Models with Application to Adverse Birth Outcomes," CHaRMS Working Papers 18-06, Centre for HeAlth Research at the Management School (CHaRMS).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:3:n:e2664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.