Online bootstrap inference for the geometric median
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2024.107992
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Axel Bücher & Ivan Kojadinovic, 2019. "A Note on Conditional Versus Joint Unconditional Weak Convergence in Bootstrap Consistency Results," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1145-1165, September.
- Daniel Gervini, 2008. "Robust functional estimation using the median and spherical principal components," Biometrika, Biometrika Trust, vol. 95(3), pages 587-600.
- Nordhausen, Klaus & Oja, Hannu, 2011. "Multivariate L1 Statistical Methods: The Package MNM," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i05).
- Liu, Ruiqi & Yuan, Mingao & Shang, Zuofeng, 2022. "Online statistical inference for parameters estimation with linear-equality constraints," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
- Godichon-Baggioni, Antoine, 2016. "Estimating the geometric median in Hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 209-222.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hervé Cardot & Antoine Godichon-Baggioni, 2017. "Fast estimation of the median covariation matrix with application to online robust principal components analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 461-480, September.
- Taskinen, Sara & Koch, Inge & Oja, Hannu, 2012. "Robustifying principal component analysis with spatial sign vectors," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 765-774.
- Dürre, Alexander & Vogel, Daniel & Fried, Roland, 2015. "Spatial sign correlation," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 89-105.
- Guangxing Wang & Sisheng Liu & Fang Han & Chong‐Zhi Di, 2023. "Robust functional principal component analysis via a functional pairwise spatial sign operator," Biometrics, The International Biometric Society, vol. 79(2), pages 1239-1253, June.
- Italo R. Lima & Guanqun Cao & Nedret Billor, 2019. "M-based simultaneous inference for the mean function of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 577-598, June.
- Mokkadem, Abdelkader & Pelletier, Mariane, 2020. "Online estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 166(C).
- Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
- Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
- Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
- Mokkadem, Abdelkader & Pelletier, Mariane, 2021. "A compact law of the iterated logarithm for online estimator of hazard rate under random censoring," Statistics & Probability Letters, Elsevier, vol. 178(C).
- repec:bla:biomet:v:71:y:2015:i:4:p:1081-1089 is not listed on IDEAS
- Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2019. "The spatial sign covariance operator: Asymptotic results and applications," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 115-128.
- Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
- Gadat, Sébastien & Panloup, Fabien, 2023. "Optimal non-asymptotic analysis of the Ruppert–Polyak averaging stochastic algorithm," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 312-348.
- Heinrich Fritz & Peter Filzmoser & Christophe Croux, 2012.
"A comparison of algorithms for the multivariate L 1 -median,"
Computational Statistics, Springer, vol. 27(3), pages 393-410, September.
- Fritz, H. & Filzmoser, P. & Croux, C., 2010. "A Comparison of Algorithms for the Multivariate L1-Median," Discussion Paper 2010-106, Tilburg University, Center for Economic Research.
- Melody Denhere & Huybrechts F. Bindele, 2016. "Rank estimation for the functional linear model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1928-1944, August.
- Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
- Han Shang, 2014.
"A survey of functional principal component analysis,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
- Han Lin Shang, 2011. "A survey of functional principal component analysis," Monash Econometrics and Business Statistics Working Papers 6/11, Monash University, Department of Econometrics and Business Statistics.
- Debruyne, Michiel & Hubert, Mia & Van Horebeek, Johan, 2010. "Detecting influential observations in Kernel PCA," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3007-3019, December.
- Xu, Yangchang & Xia, Ningning, 2023. "On the eigenvectors of large-dimensional sample spatial sign covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Kalogridis, Ioannis & Van Aelst, Stefan, 2019. "Robust functional regression based on principal components," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 393-415.
More about this item
Keywords
Bootstrap approximation; Data stream; Geometric median; Online learning; Robust inference;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:197:y:2024:i:c:s0167947324000768. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.