IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i11p199-d950343.html
   My bibliography  Save this article

Scenario Generation for Market Risk Models Using Generative Neural Networks

Author

Listed:
  • Solveig Flaig

    (Deutsche Rueckversicherung AG, Market Risk Management, Hansaallee 177, 40549 Duesseldorf, Germany
    Institut für Mathematik, Carl von Ossietzky Universität, 26111 Oldenburg, Germany)

  • Gero Junike

    (Institut für Mathematik, Carl von Ossietzky Universität, 26111 Oldenburg, Germany)

Abstract

In this research study, we show how existing approaches of using generative adversarial networks (GANs) as economic scenario generators (ESG) can be extended to an entire internal market risk model—with enough risk factors to model the full band-width of investments for an insurance company and for a time horizon of one year, as required in Solvency 2. We demonstrate that the results of a GAN-based internal model are similar to regulatory-approved internal models in Europe. Therefore, GAN-based models can be seen as an alternative data-driven method for market risk modeling.

Suggested Citation

  • Solveig Flaig & Gero Junike, 2022. "Scenario Generation for Market Risk Models Using Generative Neural Networks," Risks, MDPI, vol. 10(11), pages 1-28, October.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:11:p:199-:d:950343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/11/199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/11/199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc Hallin & Gilles Mordant & Johan Segers, 2020. "Multivariate Goodness-of-Fit Tests Based on Wasserstein Distance," Working Papers ECARES 2020-06, ULB -- Universite Libre de Bruxelles.
    2. Magnus Wiese & Lianjun Bai & Ben Wood & Hans Buehler, 2019. "Deep Hedging: Learning to Simulate Equity Option Markets," Papers 1911.01700, arXiv.org.
    3. Florian Eckerli & Joerg Osterrieder, 2021. "Generative Adversarial Networks in finance: an overview," Papers 2106.06364, arXiv.org, revised Jul 2021.
    4. Dietmar Pfeifer & Olena Ragulina, 2018. "Generating VaR Scenarios under Solvency II with Product Beta Distributions," Risks, MDPI, vol. 6(4), pages 1-15, October.
    5. Kwanda Sydwell Ngwenduna & Rendani Mbuvha, 2021. "Alleviating Class Imbalance in Actuarial Applications Using Generative Adversarial Networks," Risks, MDPI, vol. 9(3), pages 1-33, March.
    6. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    7. Thomas Viehmann, 2019. "Variants of the Smith-Wilson method with a view towards applications," Papers 1906.06363, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szymon Kubiak & Tillman Weyde & Oleksandr Galkin & Dan Philps & Ram Gopal, 2023. "Improved Data Generation for Enhanced Asset Allocation: A Synthetic Dataset Approach for the Fixed Income Universe," Papers 2311.16004, arXiv.org.
    2. Gero Junike & Hauke Stier & Marcus C. Christiansen, 2022. "Profit and loss decomposition in continuous time and approximations," Papers 2212.06733, arXiv.org, revised Dec 2024.
    3. Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
    4. Gero Junike & Solveig Flaig & Ralf Werner, 2023. "Validation of machine learning based scenario generators," Papers 2301.12719, arXiv.org, revised Dec 2024.
    5. Borgonovo, Emanuele & Clemente, Gian Paolo & Rabitti, Giovanni, 2024. "Why insurance regulators need to require sensitivity settings of internal models for their approval," Finance Research Letters, Elsevier, vol. 60(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solveig Flaig & Gero Junike, 2021. "Scenario generation for market risk models using generative neural networks," Papers 2109.10072, arXiv.org, revised Aug 2023.
    2. Gero Junike & Solveig Flaig & Ralf Werner, 2023. "Validation of machine learning based scenario generators," Papers 2301.12719, arXiv.org, revised Dec 2024.
    3. Nicolas Boursin & Carl Remlinger & Joseph Mikael & Carol Anne Hargreaves, 2022. "Deep Generators on Commodity Markets; application to Deep Hedging," Papers 2205.13942, arXiv.org.
    4. Weilong Fu & Ali Hirsa & Jorg Osterrieder, 2022. "Simulating financial time series using attention," Papers 2207.00493, arXiv.org.
    5. Haoyang Cao & Xin Guo, 2021. "Generative Adversarial Network: Some Analytical Perspectives," Papers 2104.12210, arXiv.org, revised Sep 2021.
    6. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    7. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
    8. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
    9. Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
    10. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    11. Emiel Lemahieu & Kris Boudt & Maarten Wyns, 2023. "Generating drawdown-realistic financial price paths using path signatures," Papers 2309.04507, arXiv.org.
    12. Szymon Kubiak & Tillman Weyde & Oleksandr Galkin & Dan Philps & Ram Gopal, 2023. "Improved Data Generation for Enhanced Asset Allocation: A Synthetic Dataset Approach for the Fixed Income Universe," Papers 2311.16004, arXiv.org.
    13. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    14. Fraiman, Ricardo & Moreno, Leonardo & Ransford, Thomas, 2023. "A Cramér–Wold theorem for elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    15. Bilgi Yilmaz & Christian Laudagé & Ralf Korn & Sascha Desmettre, 2024. "Electricity GANs: Generative Adversarial Networks for Electricity Price Scenario Generation," Commodities, MDPI, vol. 3(3), pages 1-27, July.
    16. Hans Buehler & Phillip Murray & Mikko S. Pakkanen & Ben Wood, 2021. "Deep Hedging: Learning Risk-Neutral Implied Volatility Dynamics," Papers 2103.11948, arXiv.org, revised Jul 2021.
    17. Shun Chen & Lingling Guo & Lei Ge, 2024. "Increasing the Hong Kong Stock Market Predictability: A Temporal Convolutional Network Approach," Computational Economics, Springer;Society for Computational Economics, vol. 64(5), pages 2853-2878, November.
    18. Luca Grilli & Domenico Santoro, 2022. "Forecasting financial time series with Boltzmann entropy through neural networks," Computational Management Science, Springer, vol. 19(4), pages 665-681, October.
    19. Aleksandar Arandjelovi'c & Julia Eisenberg, 2024. "Reinsurance with neural networks," Papers 2408.06168, arXiv.org.
    20. Mohamed Hamdouche & Pierre Henry-Labordere & Huy^en Pham, 2023. "Generative modeling for time series via Schr{\"o}dinger bridge," Papers 2304.05093, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:11:p:199-:d:950343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.