IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v60y1998i1p223-241.html
   My bibliography  Save this article

Nonparametric validation of similar distributions and assessment of goodness of fit

Author

Listed:
  • Axel Munk
  • Claudia Czado

Abstract

In this paper the problem of assessing the similarity of two cumulative distribution functions F and G is considered. An asymptotic test based on an α‐trimmed version of Mallows distance Γα(F, G) between F and G is suggested, thus demonstrating the similarity of F and G within a preassigned Γα(F, G) neighbourhood at a controlled type I error rate. The test proposed is applied to the validation of goodness of fit and for the nonparametric assessment of bioequivalence. It is shown that Γα(F, G) can be interpreted as average and population equivalence. Our approach is illustrated by various examples.

Suggested Citation

  • Axel Munk & Claudia Czado, 1998. "Nonparametric validation of similar distributions and assessment of goodness of fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 223-241.
  • Handle: RePEc:bla:jorssb:v:60:y:1998:i:1:p:223-241
    DOI: 10.1111/1467-9868.00121
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00121
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez-Esteban, Pedro C. & del Barrio, Eustasio & Cuesta-Albertos, Juan A. & Matrán, Carlos, 2010. "Assessing when a sample is mostly normal," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2914-2925, December.
    2. Eustasio del Barrio & Hristo Inouzhe & Carlos Matrán, 2020. "Box-Constrained Monotone Approximations to Lipschitz Regularizations, with Applications to Robust Testing," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 65-87, October.
    3. Freitag, Gudrun & Munk, Axel, 2005. "On Hadamard differentiability in k-sample semiparametric models--with applications to the assessment of structural relationships," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 123-158, May.
    4. L. Baringhaus & N. Henze, 2017. "Cramér–von Mises distance: probabilistic interpretation, confidence intervals, and neighbourhood-of-model validation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 167-188, April.
    5. Genest Christian & Scherer Matthias, 2019. "The world of vines: An interview with Claudia Czado," Dependence Modeling, De Gruyter, vol. 7(1), pages 169-180, January.
    6. E. Barrio & H. Inouzhe & C. Matrán, 2020. "On approximate validation of models: a Kolmogorov–Smirnov-based approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 938-965, December.
    7. Rippl, Thomas & Munk, Axel & Sturm, Anja, 2016. "Limit laws of the empirical Wasserstein distance: Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 90-109.
    8. Eustasio Barrio & Juan Cuesta-Albertos & Carlos Matrán & Sándor Csörgö & Carles Cuadras & Tertius Wet & Evarist Giné & Richard Lockhart & Axel Munk & Winfried Stute, 2000. "Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(1), pages 1-96, June.
    9. del Barrio, Eustasio & Gordaliza, Paula & Lescornel, Hélène & Loubes, Jean-Michel, 2019. "Central limit theorem and bootstrap procedure for Wasserstein’s variations with an application to structural relationships between distributions," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 341-362.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:60:y:1998:i:1:p:223-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.