IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v192y2022ics0047259x22000938.html
   My bibliography  Save this article

Tests of serial dependence for multivariate time series with arbitrary distributions

Author

Listed:
  • Nasri, Bouchra R.

Abstract

In this paper, one studies tests of serial independence using a fixed number p of consecutive observations from a stationary time series, first in the univariate case, and then in the multivariate case, where even high-dimensional vectors can be used. The common distribution function is not assumed to be continuous, and the test statistics are based on the multilinear copula process. A bootstrap procedure based on multipliers is also proposed and shown to be valid. Tests based on Spearman’s rho and Kendall’s tau statistics are also considered, extending the results known for the case of continuous distributions. Contiguity results are obtained for some specific models and sufficient conditions for consistency of test statistics are stated, as well as a data-driven procedure to select p. Also, numerical experiments are performed to assess the finite sample level and power of the proposed tests. A case study using a time series of Arctic sea ice extent images is used to illustrate the usefulness of the proposed methodologies. The R package MixedIndTests (Nasri et al., 2022) includes all the methodologies proposed in this article.

Suggested Citation

  • Nasri, Bouchra R., 2022. "Tests of serial dependence for multivariate time series with arbitrary distributions," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000938
    DOI: 10.1016/j.jmva.2022.105102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X22000938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2022.105102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Hallin & Jean-François Ingenbleek & Madan Lal Puri, 1984. "Linear serial rank tests for randomness against ARMA alternatives," ULB Institutional Repository 2013/2167, ULB -- Universite Libre de Bruxelles.
    2. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.
    3. Zaichao Du, 2016. "Nonparametric bootstrap tests for independence of generalized errors," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 55-83, February.
    4. Marc. Hallin & Jean‐François Ingenbleek & Madan L. Puri, 1987. "Linear And Quadratic Serial Rank Tests For Randomness Against Serial Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(4), pages 409-424, July.
    5. Marc Hallin & Thomas S. Ferguson & Christian Genest, 2000. "Kendall's tau for serial dependence," ULB Institutional Repository 2013/2093, ULB -- Universite Libre de Bruxelles.
    6. C Genest & J G Nešlehová & B Rémillard & O A Murphy, 2019. "Testing for independence in arbitrary distributions," Biometrika, Biometrika Trust, vol. 106(1), pages 47-68.
    7. Axel Bücher & Ivan Kojadinovic, 2019. "A Note on Conditional Versus Joint Unconditional Weak Convergence in Bootstrap Consistency Results," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1145-1165, September.
    8. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    9. Bucher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," LIDAM Reprints ISBA 2014020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Beran, R. & Bilodeau, M. & Lafaye de Micheaux, P., 2007. "Nonparametric tests of independence between random vectors," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1805-1824, October.
    11. Kilani Ghoudi & Bruno Rémillard, 2018. "Serial independence tests for innovations of conditional mean and variance models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 3-26, March.
    12. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, May.
    13. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    14. Yongmiao Hong, 2000. "Generalized spectral tests for serial dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 557-574.
    15. Nasri, Bouchra R., 2020. "On non-central squared copulas," Statistics & Probability Letters, Elsevier, vol. 161(C).
    16. Rémillard, Bruno & Papageorgiou, Nicolas & Soustra, Frédéric, 2012. "Copula-based semiparametric models for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 30-42.
    17. Ivan Kojadinovic & Jun Yan, 2011. "Tests of serial independence for continuous multivariate time series based on a Möbius decomposition of the independence empirical copula process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 347-373, April.
    18. Genest, Christian & Quessy, Jean-François & Rémillard, Bruno, 2006. "On the joint asymptotic behavior of two rank-based estimators of the association parameter in the gamma frailty model," Statistics & Probability Letters, Elsevier, vol. 76(1), pages 10-18, January.
    19. Ria Van Hecke & Stanislav Volgushev & Holger Dette, 2018. "Fourier Analysis of Serial Dependence Measures," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(1), pages 75-89, January.
    20. Kojadinovic, Ivan & Stemikovskaya, Kristina, 2019. "Subsampling (weighted smooth) empirical copula processes," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 704-723.
    21. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    22. Ghoudi, Kilani & Kulperger, Reg J. & Rémillard, Bruno, 2001. "A Nonparametric Test of Serial Independence for Time Series and Residuals," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 191-218, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nasri, Bouchra R. & Rémillard, Bruno N. & Bahraoui, Tarik, 2022. "Change-point problems for multivariate time series using pseudo-observations," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Kilani Ghoudi & Bruno Rémillard, 2018. "Serial independence tests for innovations of conditional mean and variance models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 3-26, March.
    3. Mercadier, Cécile & Roustant, Olivier & Genest, Christian, 2022. "Linking the Hoeffding–Sobol and Möbius formulas through a decomposition of Kuo, Sloan, Wasilkowski, and Woźniakowski," Statistics & Probability Letters, Elsevier, vol. 185(C).
    4. Luca Bagnato & Lucio De Capitani & Antonio Punzo, 2014. "Testing Serial Independence via Density-Based Measures of Divergence," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 627-641, September.
    5. C Genest & J G Nešlehová & B Rémillard & O A Murphy, 2019. "Testing for independence in arbitrary distributions," Biometrika, Biometrika Trust, vol. 106(1), pages 47-68.
    6. repec:wyi:journl:002087 is not listed on IDEAS
    7. Zacharias Psaradakis & Marián Vávra, 2019. "Portmanteau tests for linearity of stationary time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 248-262, February.
    8. Marc Hallin & Khalid Rifi, 1997. "A Berry-Esséen Theorem for Serial Rank Statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(4), pages 777-799, December.
    9. Ghislain Verdier, 2024. "Goodness-of-fit procedure for gamma processes," Computational Statistics, Springer, vol. 39(5), pages 2623-2650, July.
    10. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
    11. Neumeyer, Natalie & Omelka, Marek & Hudecová, Šárka, 2019. "A copula approach for dependence modeling in multivariate nonparametric time series," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 139-162.
    12. Tim Kutzker & Florian Stark & Dominik Wied, 2021. "Testing for relevant dependence change in financial data: a CUSUM copula approach," Empirical Economics, Springer, vol. 60(4), pages 1875-1894, April.
    13. Cho, Jin Seo & White, Halbert, 2011. "Generalized runs tests for the IID hypothesis," Journal of Econometrics, Elsevier, vol. 162(2), pages 326-344, June.
    14. Ta‐Hsin Li, 2021. "Quantile‐frequency analysis and spectral measures for diagnostic checks of time series with nonlinear dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 270-290, March.
    15. Diks Cees & Panchenko Valentyn, 2008. "Rank-based Entropy Tests for Serial Independence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-21, March.
    16. Marc Hallin & Simos Meintanis & Klaus Nordhausen, 2024. "Consistent Distribution–Free Affine–Invariant Tests for the Validity of Independent Component Models," Working Papers ECARES 2024-04, ULB -- Universite Libre de Bruxelles.
    17. Rohmer, Tom, 2016. "Some results on change-point detection in cross-sectional dependence of multivariate data with changes in marginal distributions," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 45-54.
    18. Xiaojun Song & Haoyu Wei, 2021. "Nonparametric Tests of Conditional Independence for Time Series," Papers 2110.04847, arXiv.org.
    19. Beaulieu Guillaume Boglioni & de Micheaux Pierre Lafaye & Ouimet Frédéric, 2021. "Counterexamples to the classical central limit theorem for triplewise independent random variables having a common arbitrary margin," Dependence Modeling, De Gruyter, vol. 9(1), pages 424-438, January.
    20. Jean-François Quessy, 2019. "Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series," Statistical Papers, Springer, vol. 60(3), pages 717-746, June.
    21. Christian Genest & Bruno Rémillard, 2004. "Test of independence and randomness based on the empirical copula process," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 335-369, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:192:y:2022:i:c:s0047259x22000938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.