IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v174y2024ics0304414924000905.html
   My bibliography  Save this article

Parameter inference for degenerate diffusion processes

Author

Listed:
  • Iguchi, Yuga
  • Beskos, Alexandros
  • Graham, Matthew M.

Abstract

We study parametric inference for ergodic diffusion processes with a degenerate diffusion matrix. Existing research focuses on a particular class of hypo-elliptic Stochastic Differential Equations (SDEs), with components split into ‘rough’/‘smooth’ and noise from rough components propagating directly onto smooth ones, but some critical model classes arising in applications have yet to be explored. We aim to cover this gap, thus analyse the highly degenerate class of SDEs, where components split into further sub-groups. Such models include e.g. the notable case of generalised Langevin equations. We propose a tailored time-discretisation scheme and provide asymptotic results supporting our scheme in the context of high-frequency, full observations. The proposed discretisation scheme is applicable in much more general data regimes and is shown to overcome biases via simulation studies also in the practical case when only a smooth component is observed. Joint consideration of our study for highly degenerate SDEs and existing research provides a general ‘recipe’ for the development of time-discretisation schemes to be used within statistical methods for general classes of hypo-elliptic SDEs.

Suggested Citation

  • Iguchi, Yuga & Beskos, Alexandros & Graham, Matthew M., 2024. "Parameter inference for degenerate diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:spapps:v:174:y:2024:i:c:s0304414924000905
    DOI: 10.1016/j.spa.2024.104384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    2. Yvo Pokern & Andrew M. Stuart & Petter Wiberg, 2009. "Parameter estimation for partially observed hypoelliptic diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 49-73, January.
    3. Cass, Thomas, 2009. "Smooth densities for solutions to stochastic differential equations with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1416-1435, May.
    4. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    5. Dureau, Joseph & Kalogeropoulos, Konstantinos & Baguelin, Marc, 2013. "Capturing the time-varying drivers of an epidemic using stochastic dynamical systems," LSE Research Online Documents on Economics 41749, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    2. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    3. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    4. Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
    5. Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
    6. Harrison Hong & Neng Wang & Jinqiang Yang, 2020. "Implications of Stochastic Transmission Rates for Managing Pandemic Risks," NBER Working Papers 27218, National Bureau of Economic Research, Inc.
    7. Hermann Singer, 2011. "Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 375-413, December.
    8. Zimo Hao & Xuhui Peng & Xicheng Zhang, 2021. "Hörmander’s Hypoelliptic Theorem for Nonlocal Operators," Journal of Theoretical Probability, Springer, vol. 34(4), pages 1870-1916, December.
    9. Dexheimer, Niklas & Strauch, Claudia, 2022. "Estimating the characteristics of stochastic damping Hamiltonian systems from continuous observations," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 321-362.
    10. Kenichiro Shiraya & Akihiko Takahashi, 2019. "Pricing Average and Spread Options Under Local-Stochastic Volatility Jump-Diffusion Models," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 303-333, February.
    11. Gourieroux, C. & Jasiak, J., 2023. "Time varying Markov process with partially observed aggregate data: An application to coronavirus," Journal of Econometrics, Elsevier, vol. 232(1), pages 35-51.
    12. Christian Fries & Joerg Kampen, 2010. "Global existence, regularity and a probabilistic scheme for a class of ultraparabolic Cauchy problems," Papers 1002.5031, arXiv.org, revised Oct 2012.
    13. Marino, L. & Menozzi, S., 2023. "Weak well-posedness for a class of degenerate Lévy-driven SDEs with Hölder continuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 106-170.
    14. Spooner, Fiona & Abrams, Jesse F. & Morrissey, Karyn & Shaddick, Gavin & Batty, Michael & Milton, Richard & Dennett, Adam & Lomax, Nik & Malleson, Nick & Nelissen, Natalie & Coleman, Alex & Nur, Jamil, 2021. "A dynamic microsimulation model for epidemics," Social Science & Medicine, Elsevier, vol. 291(C).
    15. Edwin van Leeuwen & Petra Klepac & Dominic Thorrington & Richard Pebody & Marc Baguelin, 2017. "fluEvidenceSynthesis: An R package for evidence synthesis based analysis of epidemiological outbreaks," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-12, November.
    16. Ana Prior & Marina Kleptsyna & Paula Milheiro-Oliveira, 2017. "On maximum likelihood estimation of the drift matrix of a degenerated O–U process," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 57-78, April.
    17. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    18. Shoji, Isao, 2013. "Filtering for partially observed diffusion and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4966-4976.
    19. Giesecke, Kay & Schwenkler, Gustavo, 2018. "Filtered likelihood for point processes," Journal of Econometrics, Elsevier, vol. 204(1), pages 33-53.
    20. Matthew M. Graham & Alexandre H. Thiery & Alexandros Beskos, 2022. "Manifold Markov chain Monte Carlo methods for Bayesian inference in diffusion models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1229-1256, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:174:y:2024:i:c:s0304414924000905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.