IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v20y2017i1d10.1007_s11203-016-9137-1.html
   My bibliography  Save this article

On maximum likelihood estimation of the drift matrix of a degenerated O–U process

Author

Listed:
  • Ana Prior

    (Instituto Politécnico de Lisboa)

  • Marina Kleptsyna

    (Université du Maine)

  • Paula Milheiro-Oliveira

    (Universidade do Porto)

Abstract

In this work, we consider a 2n-dimension Ornstein–Uhlenbeck (O–U) process with a singular diffusion matrix. This process represents a currently used model for mechanical systems subject to random vibrations. We study the problem of estimating the drift parameters of the stochastic differential equation that governs the O–U process. The maximum likelihood estimator proposed and explored in Koncz (J Anal Math 13(1):75–91, 1987) is revisited and applied to our model. We prove the local asymptotic normality property and the convergence of moments of the estimator. Simulation studies based on representative examples taken from the literature illustrate the obtained theoretical results.

Suggested Citation

  • Ana Prior & Marina Kleptsyna & Paula Milheiro-Oliveira, 2017. "On maximum likelihood estimation of the drift matrix of a degenerated O–U process," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 57-78, April.
  • Handle: RePEc:spr:sistpr:v:20:y:2017:i:1:d:10.1007_s11203-016-9137-1
    DOI: 10.1007/s11203-016-9137-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-016-9137-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-016-9137-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samson, Adeline & Thieullen, Michèle, 2012. "A contrast estimator for completely or partially observed hypoelliptic diffusion," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2521-2552.
    2. N. Lin & S. Lototsky, 2014. "Second-order continuous-time non-stationary Gaussian autoregression," Statistical Inference for Stochastic Processes, Springer, vol. 17(1), pages 19-49, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    2. Quentin Clairon & Adeline Samson, 2020. "Optimal control for estimation in partially observed elliptic and hypoelliptic linear stochastic differential equations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 105-127, April.
    3. Cattiaux, Patrick & León, José R. & Prieur, Clémentine, 2014. "Estimation for stochastic damping hamiltonian systems under partial observation—I. Invariant density," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1236-1260.
    4. Comte, Fabienne & Prieur, Clémentine & Samson, Adeline, 2017. "Adaptive estimation for stochastic damping Hamiltonian systems under partial observation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3689-3718.
    5. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    6. Anna Melnykova, 2020. "Parametric inference for hypoelliptic ergodic diffusions with full observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 595-635, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:20:y:2017:i:1:d:10.1007_s11203-016-9137-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.